Lecture | Type | SPPS | ECTS-Credits | Course number |
---|---|---|---|---|
Master Thesis | MT | 0,5 | 24,0 | M2.02840.40.011 |
Master Thesis Seminar | SE | 3,0 | 3,0 | M2.0840.40.021 |
Lecture | Type | SPPS | ECTS-Credits | Course number |
---|---|---|---|---|
Methods in Systems and Circuits Theory | ILV | 3,5 | 5,0 | M2.0284.10.061 |
Titel | Autor | Jahr |
---|---|---|
Design Automation Of Dynamic Comparator Using CCC Frame Work | Rajani Arasada | 2024 |
Titel | Autor | Jahr |
---|---|---|
Design Automation Of Dynamic Comparator Using CCC Frame Work | Rajani Arasada | 2024 |
Titel | Autor | Jahr |
---|
Run-Time | March/2024 - April/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
In the Chiplink project, CIME supports the development of high-speed chip-to-chip (Chiplet) data communication links for System-in-Package (SiP) chip integration.
The project objectives are (a) the systematic modelling and analysis of the signal integrity of chiplet (bunch-of-wires) data transmission links and (b) the evaluation of electromagnetic crosstalk between the single-ended chiplet data channels and sensitive RF components such as inductors in a PLL of a radar SoC.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | March/2024 - April/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
In the Chiplink project, CIME supports the development of high-speed chip-to-chip (Chiplet) data communication links for System-in-Package (SiP) chip integration.
The project objectives are (a) the systematic modelling and analysis of the signal integrity of chiplet (bunch-of-wires) data transmission links and (b) the evaluation of electromagnetic crosstalk between the single-ended chiplet data channels and sensitive RF components such as inductors in a PLL of a radar SoC.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | March/2024 - April/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
In the Chiplink project, CIME supports the development of high-speed chip-to-chip (Chiplet) data communication links for System-in-Package (SiP) chip integration.
The project objectives are (a) the systematic modelling and analysis of the signal integrity of chiplet (bunch-of-wires) data transmission links and (b) the evaluation of electromagnetic crosstalk between the single-ended chiplet data channels and sensitive RF components such as inductors in a PLL of a radar SoC.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Conference contributions | ||
---|---|---|
Title | Author | Year |
Design Automation of a 2GHz Dynamic Comparator Using the CCC Framework in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Arasada, R., Petrescu, V., Scherr, W., Paoli, G., Sondón, S., Sturm, J. | 2024 |
A lightweight Python framework for analogue circuit design, optimisation, verification and reuse in: Accellera (Hrsg.), DVCon 2024, 15-16 Oct 2024, München | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
An Easy to Use Python Framework for Circuit Sizing from Designers for Designers in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
Conference contributions | ||
---|---|---|
Title | Author | Year |
Design Automation of a 2GHz Dynamic Comparator Using the CCC Framework in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Arasada, R., Petrescu, V., Scherr, W., Paoli, G., Sondón, S., Sturm, J. | 2024 |
A lightweight Python framework for analogue circuit design, optimisation, verification and reuse in: Accellera (Hrsg.), DVCon 2024, 15-16 Oct 2024, München | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
An Easy to Use Python Framework for Circuit Sizing from Designers for Designers in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |