Lecture | Type | SPPS | ECTS-Credits | Course number |
---|---|---|---|---|
Digital Integrated Circuits 2 | ILV | 3,5 | 5,0 | M2.02840.20.021 |
Master Thesis | MT | 0,5 | 24,0 | M2.02840.40.011 |
Master Thesis Seminar | SE | 3,0 | 3,0 | M2.0840.40.021 |
Titel | Autor | Jahr |
---|
Titel | Autor | Jahr |
---|
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | December/2023 - October/2024 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Polymer fibers (PMF) reflect the latest and leading-edge research in wireline communication systems and a next step in direction of low-power, low-cost and high speed operation. Compared to optical fibers, they can be significantly more cost efficient in installation and operation. In respect to copper (twisted-pair e.g. CAT7/8 Ethernet, SATA, HDMI or similar), they can be also faster at lower power consumption. This applied research project aims to develop a research platform on one of the latest RF-SoC (radio frequency – system on chip) FPGAs (field programmable gate array), to allow more detailed analysis of the potential of such PMF links and to develop a real-life demonstration to show its capability. The research includes research on reliable communication (modulation) systems, which will differ significantly to the mentioned optical and copper SERDES (serialize/deserialize) connections but this system not yet defined. It also includes for the integration of the RF link the integration of the latest 60GHz transceiver ICs of Infineon Technologies (BGT60), which is also financing this research project. Thus this work can contribute to the development of a future PMF link standard, in a similar fashion as the initially mentioned standardized communication links.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | January/2023 - March/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
This project is dedicated to establish procedures in modelling for electromagnetic compatibility as well as high-level modelling for wireless communication and EMC. It consists of three work packages. Part 1 contains the modelling of EMC for near field communication (NFC) in the automotive domain, making use of 3D simulation and circuit simulation. Part 2 deals with functional modelling using the standardized SystemC language (IEEE 1666) for a top-down concept- and verification methodology and also investigates in extending the model using SystemC-AMS (IEEE 1666.1). Also a “shift left” approach - to start software development and test early using virtual prototypes - is addressed in this part, as well as extending the model for e.g. abstract Monte-Carlo simulations of a radio-frequency (RF) signal chain. In Part 3, the feasibility and also usability of such a high-level, functional modelling approach will be extended to wireless systems incl. EMC modelling for an NXP ultra-wide-band (UWB) transceiver product, instead of a classical Verilog WREAL model. It includes a complete end-to-end (E2E) path of transmitter (TX) and receiver (RX) with a wireless channel in between (as functional IEEE 1666/1666.1 model) and simulates EMC events (“disturbers”) in the channel. It is a cooperative project between NXP Semiconductors Austria GmbH and Co KG, Silicon Austria Labs GmbH and Carinthia University of Applied Sciences.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- NXP Semiconductors Austria GmbH (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | January/2023 - March/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
This project is dedicated to establish procedures in modelling for electromagnetic compatibility as well as high-level modelling for wireless communication and EMC. It consists of three work packages. Part 1 contains the modelling of EMC for near field communication (NFC) in the automotive domain, making use of 3D simulation and circuit simulation. Part 2 deals with functional modelling using the standardized SystemC language (IEEE 1666) for a top-down concept- and verification methodology and also investigates in extending the model using SystemC-AMS (IEEE 1666.1). Also a “shift left” approach - to start software development and test early using virtual prototypes - is addressed in this part, as well as extending the model for e.g. abstract Monte-Carlo simulations of a radio-frequency (RF) signal chain. In Part 3, the feasibility and also usability of such a high-level, functional modelling approach will be extended to wireless systems incl. EMC modelling for an NXP ultra-wide-band (UWB) transceiver product, instead of a classical Verilog WREAL model. It includes a complete end-to-end (E2E) path of transmitter (TX) and receiver (RX) with a wireless channel in between (as functional IEEE 1666/1666.1 model) and simulates EMC events (“disturbers”) in the channel. It is a cooperative project between NXP Semiconductors Austria GmbH and Co KG, Silicon Austria Labs GmbH and Carinthia University of Applied Sciences.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- NXP Semiconductors Austria GmbH (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | January/2023 - March/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
This project is dedicated to establish procedures in modelling for electromagnetic compatibility as well as high-level modelling for wireless communication and EMC. It consists of three work packages. Part 1 contains the modelling of EMC for near field communication (NFC) in the automotive domain, making use of 3D simulation and circuit simulation. Part 2 deals with functional modelling using the standardized SystemC language (IEEE 1666) for a top-down concept- and verification methodology and also investigates in extending the model using SystemC-AMS (IEEE 1666.1). Also a “shift left” approach - to start software development and test early using virtual prototypes - is addressed in this part, as well as extending the model for e.g. abstract Monte-Carlo simulations of a radio-frequency (RF) signal chain. In Part 3, the feasibility and also usability of such a high-level, functional modelling approach will be extended to wireless systems incl. EMC modelling for an NXP ultra-wide-band (UWB) transceiver product, instead of a classical Verilog WREAL model. It includes a complete end-to-end (E2E) path of transmitter (TX) and receiver (RX) with a wireless channel in between (as functional IEEE 1666/1666.1 model) and simulates EMC events (“disturbers”) in the channel. It is a cooperative project between NXP Semiconductors Austria GmbH and Co KG, Silicon Austria Labs GmbH and Carinthia University of Applied Sciences.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- NXP Semiconductors Austria GmbH (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | December/2023 - October/2024 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Polymer fibers (PMF) reflect the latest and leading-edge research in wireline communication systems and a next step in direction of low-power, low-cost and high speed operation. Compared to optical fibers, they can be significantly more cost efficient in installation and operation. In respect to copper (twisted-pair e.g. CAT7/8 Ethernet, SATA, HDMI or similar), they can be also faster at lower power consumption. This applied research project aims to develop a research platform on one of the latest RF-SoC (radio frequency – system on chip) FPGAs (field programmable gate array), to allow more detailed analysis of the potential of such PMF links and to develop a real-life demonstration to show its capability. The research includes research on reliable communication (modulation) systems, which will differ significantly to the mentioned optical and copper SERDES (serialize/deserialize) connections but this system not yet defined. It also includes for the integration of the RF link the integration of the latest 60GHz transceiver ICs of Infineon Technologies (BGT60), which is also financing this research project. Thus this work can contribute to the development of a future PMF link standard, in a similar fashion as the initially mentioned standardized communication links.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Run-Time | January/2023 - March/2025 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
This project is dedicated to establish procedures in modelling for electromagnetic compatibility as well as high-level modelling for wireless communication and EMC. It consists of three work packages. Part 1 contains the modelling of EMC for near field communication (NFC) in the automotive domain, making use of 3D simulation and circuit simulation. Part 2 deals with functional modelling using the standardized SystemC language (IEEE 1666) for a top-down concept- and verification methodology and also investigates in extending the model using SystemC-AMS (IEEE 1666.1). Also a “shift left” approach - to start software development and test early using virtual prototypes - is addressed in this part, as well as extending the model for e.g. abstract Monte-Carlo simulations of a radio-frequency (RF) signal chain. In Part 3, the feasibility and also usability of such a high-level, functional modelling approach will be extended to wireless systems incl. EMC modelling for an NXP ultra-wide-band (UWB) transceiver product, instead of a classical Verilog WREAL model. It includes a complete end-to-end (E2E) path of transmitter (TX) and receiver (RX) with a wireless channel in between (as functional IEEE 1666/1666.1 model) and simulates EMC events (“disturbers”) in the channel. It is a cooperative project between NXP Semiconductors Austria GmbH and Co KG, Silicon Austria Labs GmbH and Carinthia University of Applied Sciences.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- NXP Semiconductors Austria GmbH (Lead Partner)
Run-Time | October/2023 - September/2027 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Run-Time | December/2023 - October/2024 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Polymer fibers (PMF) reflect the latest and leading-edge research in wireline communication systems and a next step in direction of low-power, low-cost and high speed operation. Compared to optical fibers, they can be significantly more cost efficient in installation and operation. In respect to copper (twisted-pair e.g. CAT7/8 Ethernet, SATA, HDMI or similar), they can be also faster at lower power consumption. This applied research project aims to develop a research platform on one of the latest RF-SoC (radio frequency – system on chip) FPGAs (field programmable gate array), to allow more detailed analysis of the potential of such PMF links and to develop a real-life demonstration to show its capability. The research includes research on reliable communication (modulation) systems, which will differ significantly to the mentioned optical and copper SERDES (serialize/deserialize) connections but this system not yet defined. It also includes for the integration of the RF link the integration of the latest 60GHz transceiver ICs of Infineon Technologies (BGT60), which is also financing this research project. Thus this work can contribute to the development of a future PMF link standard, in a similar fashion as the initially mentioned standardized communication links.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Run-Time | April/2023 - March/2028 |
Project management | |
Project staff | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The JR Centre for System-on-Chip Design Automation funded by the Christian Doppler Forschungsgesellschaft and Bundesministerium Arbeit und Wirtschaft aims to research fundamentally new methods for the development of „system-on-chips" in modern semiconductor technologies and to advance the automation of the development process of integrated circuits. Until now, chip designers have spent a lot of time for routine tasks like reworking basic circuit blocks with already given functionality in existing technologies to enable cost reduction. The JR Centre’s research will help to automate the development of integrated circuits and thus free up the working time of experts for innovative new development tasks, therefore making an essential contribution to strengthening competitiveness in the semiconductor industry.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)