Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
Analog Integrated Circuits 2 | ILV | 3,5 | 5,0 | M2.02840.20.011 |
Design and Implementation of Analog Circuits and Systems | PA | 3,0 | 5,0 | M2.02840.20.051 |
Master Thesis | MT | 0,5 | 24,0 | M2.02840.40.011 |
Master Thesis Seminar | SE | 3,0 | 3,0 | M2.0840.40.021 |
Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
Analog Integrated Circuits 1 | ILV | 3,5 | 5,0 | M2.02840.10.011 |
Integrated Circuits Technology | ILV | 3,5 | 5,0 | M2.02840.10.031 |
Vertiefung: Elektronik | Typ | SWS | ECTS-Credits | |
---|---|---|---|---|
Integrierte Schaltungen Grundlagen | ILV | 2,0 | 2,0 | B2.05272.50.390 |
Titel | Autor | Jahr |
---|---|---|
Cost-optimized Current Sense Amplifier | Alexandru-Bogdan Tatu | 2025 |
Asynchronous Gate Driver using Asynchronous Circuit Toolkit (ACT) | Sireesha Suravarapu | 2024 |
Standardised Circuits by a Heuristics-Driven Automation System | Wolfgang Scherr | 2023 |
Unified Testbench for Analog and Digital Focused Mixed-Signal Verification of Fast Compare ADC using System Verilog Universal Verification Methodology | Björn Ziegler | 2023 |
Design and optimization of epitaxial through trenches connecting the silicon substrate | Daniel Johannes Regenfeldner | 2022 |
Liquid Metal Sensor vs Optical Sensor for Object/Pressure Recognition | Rafael Thomas Reisinger | 2021 |
Modelling of Class D amplifier for Sensor Applications with IEEE 1666.1 | David Kwaku Okyere DARKWAH | 2021 |
A 65 nm CMOS 10Gb/s 4-PAM Pre-Emphasis Serial Link Transmitter | Umair IMTIAZ | 2018 |
Advanced Current Sensing Method in Smart Power Technologies | Christoph Franz Zupancic | 2018 |
Characterization of MEMS sensor devices based on AlGaN/GaN technology | Igor ANES ROMERO | 2018 |
Design and Implementation of Analog Front End for NFC RFID with All-Digital Phase-Locked Loop | Valerii TRUNIAKOV | 2018 |
Design of Variable Gain Low Noise Amplifier for 5G Wireless Network Base Stations | Mohamed Hagag HAMADA | 2018 |
Study and development of an Integrated Current Sense Amplifier for a SenseFET | Kostiantyn BARABANOV | 2018 |
Modelling and design of Capacitive RFDAC | Jagadish VAIBHAV | 2017 |
Design of a High Speed High Linearity Operational Amplifier for Wireless Receiver Low Pass Filter | Pratap Renukaswamy | 2016 |
Design of Digitally Controlled Oscillator for WLAN 802.11b/g Clock Synthesizer | Darshan Bhaskar Shetty | 2016 |
Design Optimisation of Integrated True RMS Detector for RF power measurement | Ornel KOCI | 2016 |
Simulation and measurement of matching network components for a mobile communication system | Timo Holzmann | 2016 |
A High Speed Low Power OPAMP in 65nm CMOS Technology for Wireless Communication | Aruna Medarametla | 2015 |
High precision overcurrent protection for a smart power switch | Octavian BARBU | 2015 |
Optimal Filter Design fo Continuous-Time Delta-Sigma ADCs Based on WiFi Systems | Sanne-Maria KOBIN | 2015 |
Design of a Fully Integrated Switched Capacitor DC-DC Converter | Karlheinz Helmut Kogler | 2014 |
Development of a new Heating Concept for Automotive with Conductive Polymer Structures | Ander ELORRIETA | 2014 |
Digital Signal Processing for Color Sensing Integrated System | Mustafa Muwafaq AL-KHAZRAJI | 2014 |
Switched capacitor DC-DC converter with high current capability in a 40nm technology | Mihai Enache | 2014 |
Design of a CMOS NFC Transponder Frontend | Dmytro Cherniak | 2013 |
Integrated Color Sensor in Standard CMOS Technology | Graciele Batistell | 2013 |
Variable Gain Control Loop for a CMOS RF Low Noise Amplifier | Thomas Theisen | 2013 |
High Efficient Charge Pump Design in SMART Power Technologies | Bernhard Sorger | 2012 |
Jitter Separation of High Speed Serial Links | Liping Fan | 2012 |
Enhanced Current Limitation Concept (ECLC) | Michael Schwaiger | 2011 |
Temperature and Process Compensated Clock Oscillator in 0.13µm CMOS IC Technology | Shravan Kumar KADA | 2011 |
Family and Derivate Adaptive Universal Specification, Verification stimuli and Test pattern Database | Niranjan Reddy Suravarapu | 2010 |
Investigation of Integrated Protection Functions in Smart Power Switches based on the Development of an Advanced Control and Measurement Interface | Roland Sleik | 2010 |
DESIGN OF A RECONFIGURABLE GAIN LOW NOISE AMPLIFIER FOR MULTISTANDARD RECEIVERS | Saliha Dali | 2009 |
Automatic Gain Control Circuits for Variable Gain Low-Noise RF Amplifier | Wolfgang Aichholzer | 2008 |
Low Power, High Performance Sigma Delta Modulators Oriented to Capacitive Sensor Interfaces | Michael Peter Kropfitsch | 2008 |
Titel | Autor | Jahr |
---|---|---|
Cost-optimized Current Sense Amplifier | Alexandru-Bogdan Tatu | 2025 |
Titel | Autor | Jahr |
---|---|---|
Asynchronous Gate Driver using Asynchronous Circuit Toolkit (ACT) | Sireesha Suravarapu | 2024 |
Titel | Autor | Jahr |
---|---|---|
Standardised Circuits by a Heuristics-Driven Automation System | Wolfgang Scherr | 2023 |
Unified Testbench for Analog and Digital Focused Mixed-Signal Verification of Fast Compare ADC using System Verilog Universal Verification Methodology | Björn Ziegler | 2023 |
Titel | Autor | Jahr |
---|---|---|
Design and optimization of epitaxial through trenches connecting the silicon substrate | Daniel Johannes Regenfeldner | 2022 |
Titel | Autor | Jahr |
---|---|---|
Liquid Metal Sensor vs Optical Sensor for Object/Pressure Recognition | Rafael Thomas Reisinger | 2021 |
Modelling of Class D amplifier for Sensor Applications with IEEE 1666.1 | David Kwaku Okyere DARKWAH | 2021 |
Titel | Autor | Jahr |
---|---|---|
A 65 nm CMOS 10Gb/s 4-PAM Pre-Emphasis Serial Link Transmitter | Umair IMTIAZ | 2018 |
Advanced Current Sensing Method in Smart Power Technologies | Christoph Franz Zupancic | 2018 |
Characterization of MEMS sensor devices based on AlGaN/GaN technology | Igor ANES ROMERO | 2018 |
Design and Implementation of Analog Front End for NFC RFID with All-Digital Phase-Locked Loop | Valerii TRUNIAKOV | 2018 |
Design of Variable Gain Low Noise Amplifier for 5G Wireless Network Base Stations | Mohamed Hagag HAMADA | 2018 |
Study and development of an Integrated Current Sense Amplifier for a SenseFET | Kostiantyn BARABANOV | 2018 |
Modelling and design of Capacitive RFDAC | Jagadish VAIBHAV | 2017 |
Design of a High Speed High Linearity Operational Amplifier for Wireless Receiver Low Pass Filter | Pratap Renukaswamy | 2016 |
Design of Digitally Controlled Oscillator for WLAN 802.11b/g Clock Synthesizer | Darshan Bhaskar Shetty | 2016 |
Design Optimisation of Integrated True RMS Detector for RF power measurement | Ornel KOCI | 2016 |
Simulation and measurement of matching network components for a mobile communication system | Timo Holzmann | 2016 |
A High Speed Low Power OPAMP in 65nm CMOS Technology for Wireless Communication | Aruna Medarametla | 2015 |
High precision overcurrent protection for a smart power switch | Octavian BARBU | 2015 |
Optimal Filter Design fo Continuous-Time Delta-Sigma ADCs Based on WiFi Systems | Sanne-Maria KOBIN | 2015 |
Design of a Fully Integrated Switched Capacitor DC-DC Converter | Karlheinz Helmut Kogler | 2014 |
Development of a new Heating Concept for Automotive with Conductive Polymer Structures | Ander ELORRIETA | 2014 |
Digital Signal Processing for Color Sensing Integrated System | Mustafa Muwafaq AL-KHAZRAJI | 2014 |
Switched capacitor DC-DC converter with high current capability in a 40nm technology | Mihai Enache | 2014 |
Design of a CMOS NFC Transponder Frontend | Dmytro Cherniak | 2013 |
Integrated Color Sensor in Standard CMOS Technology | Graciele Batistell | 2013 |
Variable Gain Control Loop for a CMOS RF Low Noise Amplifier | Thomas Theisen | 2013 |
High Efficient Charge Pump Design in SMART Power Technologies | Bernhard Sorger | 2012 |
Jitter Separation of High Speed Serial Links | Liping Fan | 2012 |
Enhanced Current Limitation Concept (ECLC) | Michael Schwaiger | 2011 |
Temperature and Process Compensated Clock Oscillator in 0.13µm CMOS IC Technology | Shravan Kumar KADA | 2011 |
Family and Derivate Adaptive Universal Specification, Verification stimuli and Test pattern Database | Niranjan Reddy Suravarapu | 2010 |
Investigation of Integrated Protection Functions in Smart Power Switches based on the Development of an Advanced Control and Measurement Interface | Roland Sleik | 2010 |
DESIGN OF A RECONFIGURABLE GAIN LOW NOISE AMPLIFIER FOR MULTISTANDARD RECEIVERS | Saliha Dali | 2009 |
Automatic Gain Control Circuits for Variable Gain Low-Noise RF Amplifier | Wolfgang Aichholzer | 2008 |
Low Power, High Performance Sigma Delta Modulators Oriented to Capacitive Sensor Interfaces | Michael Peter Kropfitsch | 2008 |
Titel | Autor | Jahr |
---|---|---|
µ-ICSU | 2020 | |
Softwareentwicklung für ein lineares Netzteil | 2020 | |
Improvement of a Gesture Recognition Device | 2015 | |
Redesign of a Gesture Recognition Device | 2015 | |
Systematic Evaluation of Charge Pumps for different CMOS Technologies | 2015 | |
3D Software Simulation der Einzelprozesse mit Darstellung der Schichten eines IGBT | 2013 | |
Elektrothermische Modellierung eines Hochvolt PMOS-Transistors | 2013 | |
Entwurf und Optimierung von kapazitiven DAC Zellen für einen SAR ADC in einer 130nm Technologie | 2013 | |
Automated Circuit Optimization with Discrete Device Geometry Stepping in Advanced CMOS | 2012 | |
Benchmark of Full- and Semi-Custom Mask Design Methods for High Speed Analog Circuits in Advanced CMOS Technologies | 2012 | |
Concept development for Silicon Microphone ASIC calibration | 2012 | |
DOUBLE ISOLATED FET SWITCH | 2012 | |
DOUBLE ISOLATED FET SWITCH | 2012 | |
Development of a Silicon Microphone Evaluation Board | 2011 | |
Single Pulse Stress on Smart Power Switches | 2011 | |
Analyse, Entwurf und Design integrierter Schaltungen zur Unterspannungs- und Übertemperaturerkennung für automobile Anwendungen | 2010 | |
Wafer Direct Bonding an polykristallinen Oberflächen | 2010 | |
Entwurf und Design eines hochvolt - "Switched Capacitor" Komparators für automobile Anwendungen | 2009 |
Titel | Autor | Jahr |
---|---|---|
µ-ICSU | 2020 | |
Softwareentwicklung für ein lineares Netzteil | 2020 |
Titel | Autor | Jahr |
---|---|---|
Improvement of a Gesture Recognition Device | 2015 | |
Redesign of a Gesture Recognition Device | 2015 | |
Systematic Evaluation of Charge Pumps for different CMOS Technologies | 2015 |
Titel | Autor | Jahr |
---|---|---|
3D Software Simulation der Einzelprozesse mit Darstellung der Schichten eines IGBT | 2013 | |
Elektrothermische Modellierung eines Hochvolt PMOS-Transistors | 2013 | |
Entwurf und Optimierung von kapazitiven DAC Zellen für einen SAR ADC in einer 130nm Technologie | 2013 |
Titel | Autor | Jahr |
---|---|---|
Automated Circuit Optimization with Discrete Device Geometry Stepping in Advanced CMOS | 2012 | |
Benchmark of Full- and Semi-Custom Mask Design Methods for High Speed Analog Circuits in Advanced CMOS Technologies | 2012 | |
Concept development for Silicon Microphone ASIC calibration | 2012 | |
DOUBLE ISOLATED FET SWITCH | 2012 | |
DOUBLE ISOLATED FET SWITCH | 2012 |
Titel | Autor | Jahr |
---|---|---|
Development of a Silicon Microphone Evaluation Board | 2011 | |
Single Pulse Stress on Smart Power Switches | 2011 |
Titel | Autor | Jahr |
---|---|---|
Analyse, Entwurf und Design integrierter Schaltungen zur Unterspannungs- und Übertemperaturerkennung für automobile Anwendungen | 2010 | |
Wafer Direct Bonding an polykristallinen Oberflächen | 2010 | |
Entwurf und Design eines hochvolt - "Switched Capacitor" Komparators für automobile Anwendungen | 2009 |
Laufzeit | März/2024 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
In the Chiplink project, CIME supports the development of high-speed chip-to-chip (Chiplet) data communication links for System-in-Package (SiP) chip integration.
The project objectives are (a) the systematic modelling and analysis of the signal integrity of chiplet (bunch-of-wires) data transmission links and (b) the evaluation of electromagnetic crosstalk between the single-ended chiplet data channels and sensitive RF components such as inductors in a PLL of a radar SoC.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Laufzeit | Oktober/2023 - September/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Laufzeit | Jänner/2023 - März/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
This project is dedicated to establish procedures in modelling for electromagnetic compatibility as well as high-level modelling for wireless communication and EMC. It consists of three work packages. Part 1 contains the modelling of EMC for near field communication (NFC) in the automotive domain, making use of 3D simulation and circuit simulation. Part 2 deals with functional modelling using the standardized SystemC language (IEEE 1666) for a top-down concept- and verification methodology and also investigates in extending the model using SystemC-AMS (IEEE 1666.1). Also a “shift left” approach - to start software development and test early using virtual prototypes - is addressed in this part, as well as extending the model for e.g. abstract Monte-Carlo simulations of a radio-frequency (RF) signal chain. In Part 3, the feasibility and also usability of such a high-level, functional modelling approach will be extended to wireless systems incl. EMC modelling for an NXP ultra-wide-band (UWB) transceiver product, instead of a classical Verilog WREAL model. It includes a complete end-to-end (E2E) path of transmitter (TX) and receiver (RX) with a wireless channel in between (as functional IEEE 1666/1666.1 model) and simulates EMC events (“disturbers”) in the channel. It is a cooperative project between NXP Semiconductors Austria GmbH and Co KG, Silicon Austria Labs GmbH and Carinthia University of Applied Sciences.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- NXP Semiconductors Austria GmbH (Lead Partner)
Laufzeit | Jänner/2023 - Dezember/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | HORIZON-CL4-2022-DIGITAL-EMERGING-01-03, HORIZON-RIA |
Förderinstitution/Auftraggeber |
The EU-funded CoRaLi-DAR project will develop a low-cost, low-power and reliable advanced detection and ranging sensor system as a platform for the automotive market and beyond. The project aims at integrating in the same module both radio and light-based sensing, exploiting LiDAR’s high-resolution capabilities and RADAR’s strong reliability in adverse weather conditions. The full integration of photonics and electronics will reduce manufacturing cost and operational power.
- European Commission (Fördergeber/Auftraggeber)
- Silicon Austria Labs GmbH (Lead Partner)
- IHP GmbH
- Infineon Technologies Austria AG
- IMEC-NL
- Interuniversitair Micro-Electronica Centrum
Laufzeit | Jänner/2020 - November/2022 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Hochfrequenztechnik |
Studiengang | |
Forschungsprogramm | nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
The main goal of the ANAGEN project is to develop an agile analog design methodology where the IC analog engineering knowledge will be captured in executable generators implemented in Python programming language. The target of the project is to design of basic analog blocks and systems that will be reused across different system-on-chips (SoCs) and CMOS technologies.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG (Lead Partner)
- Johannes Kepler Universität Linz
Laufzeit | April/2019 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
The “Research Lab for Radio Frequency Frontends” (RFFE-Lab) is a cooperative research lab jointly operated with Silicon Austria Labs (SAL) and co-located at CUAS. As successor of the Josef Ressel Center for Integrated CMOS RF Systems and Circuits (Interact), it acts as an innovation hub for high-level research in RF and mmWave integrated circuits for wireless and wired high-speed data communication systems.
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | September/2018 - Dezember/2018 |
Homepage | Projektwebseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-KWF |
Förderinstitution/Auftraggeber |
The demand from industry for a shared human robot work environment for safe human robot collaboration has increased tremendously in the past years. The most demanding requirement is to ensure the inherent safety of the human in such a work environment and to fulfill the technical specification ISO/TS15066 for collaborative robots in the industrial context. Current research approaches utilize vision based solutions in combination with sensors mounted on the robot manipulator to detect an approaching human. One drawback of these solutions is the occurrence of occlusions (“blind spots”) due to, e.g., robot manipulator movement. In such a situation, the robot needs to go into an intrinsically safe mode, i.e. it has to reduce the speed of the manipulator thus significantly reducing the productivity. Consequently, the lack or rather the major restrictions of the currently available perception sensor technology with respect to measurement speed, range and integrability, etc. prevents high motion speed of collaborative robots. A central point of investigation in the project is the development of a novel perception sensor system, combining a variety of physical measurement principles (capacitive, ToF, etc.) in order to increase measurement rate, range, accuracy and resolution for position estimation and motion tracking in real time of a worker in the near surrounding of the workplace and robot manipulator. Furthermore, the new perception sensor system is fully integrated in the workplace and the robot manipulator. This new key technology enables the development of a Contactless and Safe Interaction Cell (CSIC), where a human can safely fulfill collaborative tasks jointly with a robot manipulator. Parts of the perception sensor are also utilized for a gesture based human robot interface. This allows for an intuitive interaction of the human with the robot manipulator, which will improve the user experience and increase the user acceptance. The user acceptance will be further fostered through the imitation of a human-human interaction behavior as the robot manipulator will mimic human behavior in the motion planning and control strategy of the robot manipulator. The new perception sensor technology will thus tremendously increase the operational speed of the robot manipulator in the CSIC further increasing the productivity of the collaborative human robot work cell while ensuring the safety of the human throughout the entire time and raising the human acceptance and user experience due to a human like intuitive interaction and control.
Project goals:
* Development of a modular human robot work cell (Contactless and Safe Interaction Cell)
* Realtime perception sensor system
* Realtime proximity sensor system
* Capacitive to Digital Converter Sensor Chip
Nähere Informationen entnehmen Sie bitte der Webseite: https://www.efre.gv.at/
- Alpen Adria Universität Klagenfurt
- Joanneum Research Forschungsgesellschaft mbH
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
Laufzeit | März/2017 - April/2021 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | BRIDGE 4 |
Förderinstitution/Auftraggeber |
Die Forschungsarbeiten konzentrierten sich auf Modellierung und Design von On-Chip-Netzwerken vom System bis zur physikalischen Ebene und benötigten zur Verifikation die Entwicklung und Fertigung von Testchips in einer Sub-100 nm-CMOS-Technologie. Angestrebt wurden analoge Lösungen zur Echounterdrückung (Vollduplexbetrieb) sowie zur Dämpfung des Übersprechens (MIMO).
- FFG (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | April/2014 - September/2019 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Intel Mobile Communications Austria GmbH (Lead Partner)
Laufzeit | Jänner/2013 - Jänner/2014 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | Zentrale Forschungsförderung - ZFF 2012 |
Förderinstitution/Auftraggeber |
The proposed project will combine the research interests of two curricula in the faculty Engineering & IT of FH-Kärnten/Carinthia University of Applied Sciences: ISCD – Integrated Systems and Circuits Design and Health Care IT (HC IT). The project is part of the R&D strategies of both curricula and also fully in line with the long term R&D strategy of FH-Kärnten (development of sustainable technologies). ISCD researchers [1-3] have been working on a cooperative project (COSMOS, 4/2011 – 3/2013) to develop an innovative integrated color sensor. Health Care IT researchers are working on themes of ambient-assisted living and are focusing on the development of mobile supported devices, tele-monitoring, home-based training systems to improve physical fitness, methods to support rehabilitation activities, etc. Of special interest is the development of non-invasive medical home appliances, which require a high level of miniaturization and/or integration.
- eb&p Umweltbüro GmbH (Fördergeber/Auftraggeber)
Laufzeit | April/2011 - September/2013 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Integrierte Schaltkreise |
Studiengang | |
Forschungsprogramm | FIT-IT (Projektnummer FFG 830607) |
Förderinstitution/Auftraggeber |
The COSMOS project’s focus is to research and develop a novel monolithically integrated low-cost Color sensor based on standard CMOS technology without costly process modifications or any external color filter structure. The sensor is based on a new photodiode color sensing technology in combination with algorithms for color reconstruction. It includes a high dynamic range analog frontend with a 20 bit Resolution ADC. A fully integrated color sensor prototype system was realized as key enabler for scientific and technical exploitations. New color detection methods could be demonstrated, which enables highly integrated low-cost color sensors for a wide range of consumer, industrial or biomedical applications. The proposed sensor is more technologically advanced compared to the current integrated solutions and moreover it is fully compatible with mass market applications.
- FFG (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Laufzeit | April/2011 - März/2014 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Integrierte Schaltkreise |
Studiengang | |
Forschungsprogramm | ENIAC Call 2010/FFG Projektnr. 829393 |
Förderinstitution/Auftraggeber |
This project aims at developing architecture and technologies for implementing agile radio frequency (RF) transceiver capacities in future radio communication products. These new architecture and technologies will be able to manage multi-standard (multi-band, multi-data-rate, and multi-waveform) operation with high modularity, low-power consumption, high reliability, high integration, low costs, low PCB area, and low bill of material (BOM). This will not only require smart RF architectures in advanced CMOS and Bi-CMOS technologies, but also need to incorporate e.g. MEMS technologies and novel simulation methodology for achieving these complex optimizations. Today, the analog RF frontend simply duplicates the circuitry for each band which highly inefficient. Frequency agile high dynamic range digitally assisted RF architectures suitable for nanoscale CMOS together with tunable filters are the key innovations proposed for this project.
- Eniac Joint Untertaking (JU) (Fördergeber/Auftraggeber)
- FFG (Fördergeber/Auftraggeber)
- DICE GmbH & Co KG (Lead Partner)
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | Oktober/2023 - September/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2023 - Dezember/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | HORIZON-CL4-2022-DIGITAL-EMERGING-01-03, HORIZON-RIA |
Förderinstitution/Auftraggeber |
The EU-funded CoRaLi-DAR project will develop a low-cost, low-power and reliable advanced detection and ranging sensor system as a platform for the automotive market and beyond. The project aims at integrating in the same module both radio and light-based sensing, exploiting LiDAR’s high-resolution capabilities and RADAR’s strong reliability in adverse weather conditions. The full integration of photonics and electronics will reduce manufacturing cost and operational power.
- European Commission (Fördergeber/Auftraggeber)
- Silicon Austria Labs GmbH (Lead Partner)
- IHP GmbH
- Infineon Technologies Austria AG
- IMEC-NL
- Interuniversitair Micro-Electronica Centrum
Laufzeit | Oktober/2023 - September/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Laufzeit | Februar/2018 - Dezember/2030 |
Homepage | Hauptseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | ZFF_1+ F&E Gruppen, 1. Call 2017 |
Förderinstitution/Auftraggeber |
Die Forschungsgruppe RESPECT hat das Ziel die unterschiedlichen, zur Zeit an der Fachhochschule unabhängig bearbeiteten Forschungsthemen im Bereich Hochfrequenztechnik, Analog- und Digitaltechnik zu bündeln und damit eine enge Zusammenarbeit und Knowhow-Austausch zu ermöglichen.
Die Forschungs- und Entwicklungsaktivitäten der Forschungsgruppe können thematisch in die 3 Themenbereiche: Integrierte Schaltungen, Systemintegration und Modellierung und Simulation gebündelt werden. Die enge Kooperation und der Austausch der vorhandenen spezifischen Kompetenzen zwischen diesen drei Themenbereichen innerhalb der Forschungsgruppe ermöglicht die Durchführung komplexer, multi-disziplinärer Projekte im Bereich integrierter Schaltungen. Weites kann im Vergleich zum Ist-Stand die internationale Sichtbarkeit im Bereich der Forschung gesteigert werden.
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2023 - Dezember/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | HORIZON-CL4-2022-DIGITAL-EMERGING-01-03, HORIZON-RIA |
Förderinstitution/Auftraggeber |
The EU-funded CoRaLi-DAR project will develop a low-cost, low-power and reliable advanced detection and ranging sensor system as a platform for the automotive market and beyond. The project aims at integrating in the same module both radio and light-based sensing, exploiting LiDAR’s high-resolution capabilities and RADAR’s strong reliability in adverse weather conditions. The full integration of photonics and electronics will reduce manufacturing cost and operational power.
- European Commission (Fördergeber/Auftraggeber)
- Silicon Austria Labs GmbH (Lead Partner)
- IHP GmbH
- Infineon Technologies Austria AG
- IMEC-NL
- Interuniversitair Micro-Electronica Centrum
Laufzeit | Jänner/2023 - März/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
This project is dedicated to establish procedures in modelling for electromagnetic compatibility as well as high-level modelling for wireless communication and EMC. It consists of three work packages. Part 1 contains the modelling of EMC for near field communication (NFC) in the automotive domain, making use of 3D simulation and circuit simulation. Part 2 deals with functional modelling using the standardized SystemC language (IEEE 1666) for a top-down concept- and verification methodology and also investigates in extending the model using SystemC-AMS (IEEE 1666.1). Also a “shift left” approach - to start software development and test early using virtual prototypes - is addressed in this part, as well as extending the model for e.g. abstract Monte-Carlo simulations of a radio-frequency (RF) signal chain. In Part 3, the feasibility and also usability of such a high-level, functional modelling approach will be extended to wireless systems incl. EMC modelling for an NXP ultra-wide-band (UWB) transceiver product, instead of a classical Verilog WREAL model. It includes a complete end-to-end (E2E) path of transmitter (TX) and receiver (RX) with a wireless channel in between (as functional IEEE 1666/1666.1 model) and simulates EMC events (“disturbers”) in the channel. It is a cooperative project between NXP Semiconductors Austria GmbH and Co KG, Silicon Austria Labs GmbH and Carinthia University of Applied Sciences.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- NXP Semiconductors Austria GmbH (Lead Partner)
Laufzeit | Oktober/2023 - September/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Bildungsforschung |
Studiengänge | |
Forschungsprogramm | DIGITAL-2022-SKILLS-03-SPECIALISED-EDU, DIGITAL-SIMPLE |
Förderinstitution/Auftraggeber |
The EU Chips Act aims to increase Europe‘s global production share of semiconductors to 20% by 2030, leading to a need for a skilled workforce to support this growth. Additionally, the EU‘s Green Deal initiative focuses on a transition to sustainable and energy efficient technologies, further emphasizing the need for expertise in sustainable chip development and green applications. There is an EU wide shortage of skilled workers in microelectronics. Addressing this shortage will be crucial in meeting the goals of both the EU Chips Act and the Green Deal. Furthermore, the next generation of students is largely interested in contributing to a sustainable environment. Providing them with the opportunity to gain deeper expertise in this field will align their skills with the industry‘s future needs. The proposed project „Green Chips-EDU“ supports the aforementioned goals by addressing the needs and challenges of a green and digital transition in the microelectronics industry. The consortium, made up of 15 key players from 7 EU countries, aims to build an attractive education ecosystem in green microelectronics by integrating the knowledge triangle of excellent education, industries needs and research challenges. The consortium includes 6 Unite! partners working on a harmonized curriculum focusing on energy efficiency and the development of sustainable integrated circuits. The project addresses all objectives from the call by offering a wide range of degree programs including mutual recognition as well as self-standing modules, implementing staff and student mobility, digital learning formats and upgrading infrastructure. About 600 students are planned to receive degrees or certificates in green electronics. In addition, summer schools, sustainability hackathons, learn-repair cafés as well as expert lectures by the partner companies and research institutions are organized to attract and train students to counteract the skills shortage in microelectronics in the EU.
- European Commission (Fördergeber/Auftraggeber)
- Politecnico Di Torino
- Technische Universität Darmstadt
- Universitat Politecnica de Catalunya
- Institut Polytechnique de Grenoble
- Instituto Superior Tecnico
- INESC ID
- Infineon Technologies Austria AG
- KONCAR - ELECTRONICS AND INFORMATICS Inc.
- Silicongate LDA
- JLG Formations
- AEDVICES Consulting
- RUSZ - Verein zur Förderung der Sozialwirtschaft
- BK-Business Konsens OG
- CADENCE DESIGN SYSTEMS GMBH
- STMICROELECTRONICS (ALPS) SAS
- ONG "THE STERN STEWART INSTITUTE"/LYCEE PRIVE SHORGE
- Technische Universität Graz (Lead Partner)
Laufzeit | März/2024 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
In the Chiplink project, CIME supports the development of high-speed chip-to-chip (Chiplet) data communication links for System-in-Package (SiP) chip integration.
The project objectives are (a) the systematic modelling and analysis of the signal integrity of chiplet (bunch-of-wires) data transmission links and (b) the evaluation of electromagnetic crosstalk between the single-ended chiplet data channels and sensitive RF components such as inductors in a PLL of a radar SoC.
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Laufzeit | April/2019 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
The “Research Lab for Radio Frequency Frontends” (RFFE-Lab) is a cooperative research lab jointly operated with Silicon Austria Labs (SAL) and co-located at CUAS. As successor of the Josef Ressel Center for Integrated CMOS RF Systems and Circuits (Interact), it acts as an innovation hub for high-level research in RF and mmWave integrated circuits for wireless and wired high-speed data communication systems.
Laufzeit | Jänner/2020 - November/2022 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Hochfrequenztechnik |
Studiengang | |
Forschungsprogramm | nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
The main goal of the ANAGEN project is to develop an agile analog design methodology where the IC analog engineering knowledge will be captured in executable generators implemented in Python programming language. The target of the project is to design of basic analog blocks and systems that will be reused across different system-on-chips (SoCs) and CMOS technologies.
- Silicon Austria Labs GmbH (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG (Lead Partner)
- Johannes Kepler Universität Linz
Laufzeit | März/2017 - April/2021 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | BRIDGE 4 |
Förderinstitution/Auftraggeber |
Die Forschungsarbeiten konzentrierten sich auf Modellierung und Design von On-Chip-Netzwerken vom System bis zur physikalischen Ebene und benötigten zur Verifikation die Entwicklung und Fertigung von Testchips in einer Sub-100 nm-CMOS-Technologie. Angestrebt wurden analoge Lösungen zur Echounterdrückung (Vollduplexbetrieb) sowie zur Dämpfung des Übersprechens (MIMO).
- FFG (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | April/2014 - September/2019 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengang | |
Forschungsprogramm | Josef Ressel Zentrum |
Förderinstitution/Auftraggeber |
The research activities of the proposed Ressel Center at FH-Kärnten will focus on modeling and implementation of integrated radio-frequency (RF) systems and circuits based on standard integrated circuit CMOS technologies. The tasks include all necessary development steps from modeling, simulation, circuit implementation to lab characterization supporting future integrated wireless communication systems.
- Christian Doppler Forschungsgesellschaft (CDG) (Fördergeber/Auftraggeber)
- Intel Mobile Communications Austria GmbH (Lead Partner)
Laufzeit | September/2018 - Dezember/2018 |
Homepage | Projektwebseite |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-KWF |
Förderinstitution/Auftraggeber |
The demand from industry for a shared human robot work environment for safe human robot collaboration has increased tremendously in the past years. The most demanding requirement is to ensure the inherent safety of the human in such a work environment and to fulfill the technical specification ISO/TS15066 for collaborative robots in the industrial context. Current research approaches utilize vision based solutions in combination with sensors mounted on the robot manipulator to detect an approaching human. One drawback of these solutions is the occurrence of occlusions (“blind spots”) due to, e.g., robot manipulator movement. In such a situation, the robot needs to go into an intrinsically safe mode, i.e. it has to reduce the speed of the manipulator thus significantly reducing the productivity. Consequently, the lack or rather the major restrictions of the currently available perception sensor technology with respect to measurement speed, range and integrability, etc. prevents high motion speed of collaborative robots. A central point of investigation in the project is the development of a novel perception sensor system, combining a variety of physical measurement principles (capacitive, ToF, etc.) in order to increase measurement rate, range, accuracy and resolution for position estimation and motion tracking in real time of a worker in the near surrounding of the workplace and robot manipulator. Furthermore, the new perception sensor system is fully integrated in the workplace and the robot manipulator. This new key technology enables the development of a Contactless and Safe Interaction Cell (CSIC), where a human can safely fulfill collaborative tasks jointly with a robot manipulator. Parts of the perception sensor are also utilized for a gesture based human robot interface. This allows for an intuitive interaction of the human with the robot manipulator, which will improve the user experience and increase the user acceptance. The user acceptance will be further fostered through the imitation of a human-human interaction behavior as the robot manipulator will mimic human behavior in the motion planning and control strategy of the robot manipulator. The new perception sensor technology will thus tremendously increase the operational speed of the robot manipulator in the CSIC further increasing the productivity of the collaborative human robot work cell while ensuring the safety of the human throughout the entire time and raising the human acceptance and user experience due to a human like intuitive interaction and control.
Project goals:
* Development of a modular human robot work cell (Contactless and Safe Interaction Cell)
* Realtime perception sensor system
* Realtime proximity sensor system
* Capacitive to Digital Converter Sensor Chip
Nähere Informationen entnehmen Sie bitte der Webseite: https://www.efre.gv.at/
- Alpen Adria Universität Klagenfurt
- Joanneum Research Forschungsgesellschaft mbH
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
Laufzeit | April/2011 - März/2014 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Integrierte Schaltkreise |
Studiengang | |
Forschungsprogramm | ENIAC Call 2010/FFG Projektnr. 829393 |
Förderinstitution/Auftraggeber |
This project aims at developing architecture and technologies for implementing agile radio frequency (RF) transceiver capacities in future radio communication products. These new architecture and technologies will be able to manage multi-standard (multi-band, multi-data-rate, and multi-waveform) operation with high modularity, low-power consumption, high reliability, high integration, low costs, low PCB area, and low bill of material (BOM). This will not only require smart RF architectures in advanced CMOS and Bi-CMOS technologies, but also need to incorporate e.g. MEMS technologies and novel simulation methodology for achieving these complex optimizations. Today, the analog RF frontend simply duplicates the circuitry for each band which highly inefficient. Frequency agile high dynamic range digitally assisted RF architectures suitable for nanoscale CMOS together with tunable filters are the key innovations proposed for this project.
- Eniac Joint Untertaking (JU) (Fördergeber/Auftraggeber)
- FFG (Fördergeber/Auftraggeber)
- DICE GmbH & Co KG (Lead Partner)
Laufzeit | Jänner/2013 - Jänner/2014 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Mikroelektronik |
Studiengänge | |
Forschungsprogramm | Zentrale Forschungsförderung - ZFF 2012 |
Förderinstitution/Auftraggeber |
The proposed project will combine the research interests of two curricula in the faculty Engineering & IT of FH-Kärnten/Carinthia University of Applied Sciences: ISCD – Integrated Systems and Circuits Design and Health Care IT (HC IT). The project is part of the R&D strategies of both curricula and also fully in line with the long term R&D strategy of FH-Kärnten (development of sustainable technologies). ISCD researchers [1-3] have been working on a cooperative project (COSMOS, 4/2011 – 3/2013) to develop an innovative integrated color sensor. Health Care IT researchers are working on themes of ambient-assisted living and are focusing on the development of mobile supported devices, tele-monitoring, home-based training systems to improve physical fitness, methods to support rehabilitation activities, etc. Of special interest is the development of non-invasive medical home appliances, which require a high level of miniaturization and/or integration.
- eb&p Umweltbüro GmbH (Fördergeber/Auftraggeber)
Laufzeit | April/2011 - September/2013 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Integrierte Schaltkreise |
Studiengang | |
Forschungsprogramm | FIT-IT (Projektnummer FFG 830607) |
Förderinstitution/Auftraggeber |
The COSMOS project’s focus is to research and develop a novel monolithically integrated low-cost Color sensor based on standard CMOS technology without costly process modifications or any external color filter structure. The sensor is based on a new photodiode color sensing technology in combination with algorithms for color reconstruction. It includes a high dynamic range analog frontend with a 20 bit Resolution ADC. A fully integrated color sensor prototype system was realized as key enabler for scientific and technical exploitations. New color detection methods could be demonstrated, which enables highly integrated low-cost color sensors for a wide range of consumer, industrial or biomedical applications. The proposed sensor is more technologically advanced compared to the current integrated solutions and moreover it is fully compatible with mass market applications.
- FFG (Fördergeber/Auftraggeber)
- Infineon Technologies Austria AG (Fördergeber/Auftraggeber)
Artikel in Zeitschriften | ||
---|---|---|
Titel | Autor | Jahr |
Color recognition sensor in standard CMOS technology Solid-State Electronics | G. Batistell, V.C. Zhang, J. Sturm | 2014 |
Integrated CMOS Optical Sensor for Light Spectral Analysis IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 20(6) | J. Sturm, G. Batistell, L.M. Faller, V.C. Zhang | 2014 |
Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology Radioengineering, 23(1):319-327 | J. Sturm, M. Groinig, X. Xiang | 2014 |
0.6-3-GHz Wideband Receiver RF Front-End With a Feedforward Noise and Distortion Cancellation Resistive-Feedback LNA IEEE Trans. Microw. Theory Techn., 60(2):387-392 | Wang, X., Sturm, J., Yan, N., Tan, X., Min, H. | 2012 |
Design of a reconfigurable gain low noise amplifier for multistandard receivers in 65nm technology e&i elektrotechnik und informationstechnik, S. 78-85 | Dali, S., Sturm, J. | 2010 |
Optical Receiver IC for CD/DVD/Blue-Laser Application IEEE Journal of Solid-State Circuits, 40(7) | Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, S., Zimmermann, H. | 2005 |
Vibrational analysis of derivatives of polyparaphenylene Synthetic Metals, 84:673-674 | Godon, C., Buisson, J.P., Lefrant, S., Sturm, J., Klemenc, M., Graupner, W., Leising, G., Mayer, M., Schlüter, A.D., Scherf, U. | 1997 |
Optical anisotropy in thin films of a blue electroluminescent conjugated polymer Thin Solid Films, 298:138-142 | Sturm, J., Tasch, S., Leising, G., Kowalszik, T., Singer, K., Toussaere, E., Zyss, J., Scherf, U. | 1997 |
Stable Poly(Para-Phenylene)s and their Application in Organic Light Emitting Devices Synthetic Metals, 71:2193-2196 | Grem, G., Martin, V., Meghdadi, F., Paar, C., Stampfl, J., Sturm, J., Tasch, S., Leising, G. | 1995 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
Design Automation of a 2GHz Dynamic Comparator Using the CCC Framework in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Arasada, R., Petrescu, V., Scherr, W., Paoli, G., Sondón, S., Sturm, J. | 2024 |
A lightweight Python framework for analogue circuit design, optimisation, verification and reuse in: Accellera (Hrsg.), DVCon 2024, 15-16 Oct 2024, München | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
An Easy to Use Python Framework for Circuit Sizing from Designers for Designers in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
BAG2 Assisted Hierarchical Analog Layout Synthesis for Planar Technologies in: IEEE Xplore (Hrsg.), Austrochip Workshop on Microelectronics (Austrochip), 20-21 Sep 2023, Graz | BIO, M., Scherr, W., Agbemenu, A., Sondón, S., Sturm, J., Hande, V. | 2023 |
High-level synthesis of digital signal processing circuits in: 32nd International Electrotechnical and Computer Science Conference, 28-29 Sep 2023, Portorož, Slovenija | Trost, A., Scherr, W., Sturm, J. | 2023 |
Novel Capacitance Sensing Measurement Technique for Human-Robot Co-existence in: IEEE (Hrsg.), IEEE Austrochip Workshop on Microelectronics (Austrochip), 11-11 Oct 2022 | Hande, V., Scherr, W., MORADIAN BOVANLOO, M., Reddy, S., MIKHAIL, O., Zangl, H., Sturm, J. | 2022 |
System-in-Package Matching Network for RF Wireless Transceivers in: 24th Austrochip Conference, 19-19 Oct 2016, S. 35-39 | Batistell, G., Holzmann, T., Sterner, H., Sturm, J. | 2016 |
System-in-Package Matching Network for RF Wireless Transceivers. in: 4th Workshop Radio Frequency Engineering Working Group of Austrian Research Association, 17-18 Oct 2016, Villach | Batistell, G., Sturm, J. | 2016 |
Algorithms for De-embedding of RF Measurement Data for Balanced and Unbalanced Setups in: 52nd Conference on Microelectronics, Devices and Materials (MIDEM), 28-30 Sep 2016, Ankaran, Slovenia, S. 35-39 | Holzmann, T., Batistell, G., Sterner, H., Sturm, J. | 2016 |
Dynamically Reconfigurable Multiband Subsampling Receiver Architecture in: 4th Workshop Radio Frequency Engineering Working Group of Austrian Research Association, 17-18 Oct 2016, Villach | Kale, A., Sankara, R., Pasupureddi, V., Sturm, J. | 2016 |
A Tunable Gain and Tunable Band Active Balun LNA for IEEE 802.11ac WLAN Receivers in: 42nd European Solid-State Circuits Conference, 12-15 Sep 2016, Lausanne, S. 185-188 | Popuri, S., Pasupureddi, V., Sturm, J. | 2016 |
A Tunable Gain and Tunable Band Active Balun LNA for IEEE 802.11ac WLAN Receivers. in: 4th Workshop Radio Frequency Engineering Working Group of Austrian Research Association, 17-18 Oct 2016, Villach | Popuri, S., Pasupureddi, V., Sturm, J. | 2016 |
Analysis and Design of Differential Feedback CG LNA Topologies for Low Voltage Multistandard Wireless Receivers in: 24th Austrochip Conference, 19-19 Oct 2016, S. 24-29 | Renukaswamy, P., Pasupureddi, V., Sturm, J. | 2016 |
A 2.4 GHz, 1 dB Noise Figure Common-Gate LNA for WLAN Frontend in: 24th Telecommunications Forum TELFOR 2016, 22-23 Nov 2016, Belgrade, Serbia | Shetty, D., Pasupureddi, V., Sturm, J. | 2016 |
Highly Integrated Low-Cost Color Sensors in: 8. Forschungsforum der österreichischen Fachhochschulen, Apr 2014, Kufstein | J. Sturm, G. Batistell | 2014 |
Decimation Filter and Tri-stimulus Colour Transformation for Ambient Colour Light Sensor in: MIDEM 2014, 50th International Conference on Microelectronics, Devices and Materials, 08-10 Oct 2014, Ljubljana, Slovenia | Zhang, V., Ofner, E., Raič, D., Sturm, J., Fant, A., Strle, D.; | 2014 |
Filter-less Color Sensor in Standard CMOS Technology in: 43th European Solid-State Device Research Conference - ESSDERC, Sep 2013, Bucharest, S. 123-126 | G. Batistell, J. Sturm | 2013 |
Simulation and Implementation of a Filter-less CMOS Color Detector in: 49th Conference on Microelectronics, Devices and Materials (MIDEM), Oct 2013, S. 167-172 | G. Batistell, J. Sturm | 2013 |
Standard CMOS Color Sensor based on laterally and vertically arranged photodiodes in: Austrochip, Oct 2013 | G. Batistell, J. Sturm | 2013 |
A 65nm CMOS Wide-band LNA with ContinuouslyTunable Gain from 0dB to 24dB in: IEEE International Symposium on Circuits and Systems - ISCAS, Jun 2013, Beijing, China, S. 733-736 | J. Sturm, X. Xinbo, H. Pretl | 2013 |
Performance Study of a 65nm CMOS Tuneable Gain LNA in: Austrochip, Oct 2012, S. 47-50 | X. Xiang, J. Sturm | 2012 |
Tunable Linear MOS Resistor for RF Applications in: Silicon Monolithic Integrated Circuits in RF Systems, Jan 2012, Santa Clara, CA | X. Xiang, J. Sturm | 2012 |
Temperature and Process Compensated Oscillator in 0.13 m CMOS IC Technology in: Austrochip 2011, 01-31 Oct 2011, S. 21-25 | Astrom, D., Kada, K., Sturm, J. | 2011 |
Second Order Effects in Multislope A/D Converters in: Austrochip 2011, Oct 2011, S. 11-15 | Geldin, M., Fant, A., Sturm, J. | 2011 |
Temperature and Process Compensated Oscillator in 0.13μm CMOS IC Technology in: Austrochip 2011, Oct 2011, S. 21-25 | Kumar, S., Kada, O., Astrom, D., Sturm, J. | 2011 |
Lateral Junction Color Detector in Standard CMOS Technology in: Austrochip 2010, Oct 2010, Villach | Batistell, G., Sturm, J. | 2010 |
Wideband LNAs with Noise and Distortion Cancelation in: Austrochip 2010, Oct 2010, Villach | Dali, S., Wang, X., Aichholzer, W., Sturm, J. | 2010 |
A 0.1-4GHz Resistive Feedback LNA with Feedforward Noise and Distortion Cancelation in: European Solid-State Circuits Conference, Sep 2010, S. 406-409 | X. Wang, W. Aichholzer, J. Sturm | 2010 |
CMOS Active Resistor for RF Applications in: Austrochip 2010, Oct 2010, Villach | Xiang, X., Sturm, J. | 2010 |
A 65nm CMOS RF Power Detector with Integrated Offset Storage in: TU Graz (Hrsg.), Austrochip 2009, Oct 2009, Graz, S. 5-8 | Aichholzer, W., Sturm, J. | 2009 |
Photodiode Modeling for Optoelectronic Integrated Circuits in: Semiconductor Conference Dresden (2008), 2008 | Sturm, J., Zimmermann, H. | 2008 |
A Programmable OEIC for Laser Applications in the Range from 405nm to 780nm in: European Solid-State Circuits Conference (2005), 2005, S. 439-442 | Seidl, C., Schatzmayr, H., Sturm, J., Groiss, S., Leifhelm, M., Spitzer, D., Schaunig, H., Zimmermann, H., | 2005 |
Optical Receiver IC for CD/DVD/Blue-Laser Application in: Design Automation and Test in Europe Conference (2005), 2005 | Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, G., Zimmermann, H. | 2005 |
High-Speed Variable Gain Transimpedance Amplifiers with Integrated Photodiodes in BiCMOS Technology in: European Solid-State Circuits Conference (2004), 2004 | Sturm, J. | 2004 |
Optical Receiver IC for CD/DVD/Blue-Laser Application in: European Solid-State Circuits Conference (2004), 2004, S. 267-270 | Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, S., Zimmermann, H. | 2004 |
Integrated photodiodes in standard BiCMOS technology in: SPIE Photonics West, 2003, San Jose, CA, S. 109-112 | Sturm, J., Hainz, S., Langguth, G., Zimmermann, H. | 2003 |
Low-Noise Sampling System for Photo Current Detection with Monolithically Integrated Photo Diodes in: European Solid-State Circuits Conference (2001), 0, S. 180-184 | Groiss, S., Sturm, J. | 2001 |
sonstige Publikationen | ||
---|---|---|
Titel | Autor | Jahr |
Patent (US 2007177702 - published) Receiving data over channels with intersymbol interference | Prete, E., Tatschl-Unterberger, E., Schobinger, M., DaDalt, N., Sturm J., Sanders, A., Gardellini, D., Neurohr N. | 2007 |
Patent (DE 102004009684 - published) Transimpedance amplifier system for high switching frequency for integrated optical sensors for read-out of compact (CD) and digital versatile discs (DVD) etc., with current input and output voltage dependent on input current | Sturm, J. | 2005 |
Patent (DE 102004009685) Power amplifier arrangement, has transistors with collector terminals respectively connected to input and output, and capacitive storage unit and potential buffer serially connected between output and node | Sturm, J., Groiss, S. | 2005 |
Patent (US 2006008933 A1) Method for producing an integrated pin diode and corresponding circuit | Sturm, J., Müller, K.H. | 2005 |
Patent (DE 10126379) Schaltungsanordnung | Sturm, J. | 2003 |
Patent (DE 10129014 - dead) Signal rise time optimization circuit, especially for sensor signal, signal path for input signal, second signal path for correction signal derived from input signal, signal addition function | Sturm, J. | 2003 |
Patent (US 2002070888) Circuit arrangement for conversion of an input current signal to a corresponding digital output signal | Sturm, J., Groiss, G. | 2002 |
Patent (DE 10058952) Circuit for converting analog input signal to corresponding analog output signal has transconductance amplifiers converting input analog voltage signals to output current signals | Sturm, J., Groiss, S. | 2002 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
Design Automation of a 2GHz Dynamic Comparator Using the CCC Framework in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Arasada, R., Petrescu, V., Scherr, W., Paoli, G., Sondón, S., Sturm, J. | 2024 |
A lightweight Python framework for analogue circuit design, optimisation, verification and reuse in: Accellera (Hrsg.), DVCon 2024, 15-16 Oct 2024, München | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
An Easy to Use Python Framework for Circuit Sizing from Designers for Designers in: IEEExplore (Hrsg.), Austrochip 2024, 25-26 Sep 2024, Wien | Scherr, W., Petrescu, V., Sturm, J., Hammerschmidt, D., Sondón, S. | 2024 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
BAG2 Assisted Hierarchical Analog Layout Synthesis for Planar Technologies in: IEEE Xplore (Hrsg.), Austrochip Workshop on Microelectronics (Austrochip), 20-21 Sep 2023, Graz | BIO, M., Scherr, W., Agbemenu, A., Sondón, S., Sturm, J., Hande, V. | 2023 |
High-level synthesis of digital signal processing circuits in: 32nd International Electrotechnical and Computer Science Conference, 28-29 Sep 2023, Portorož, Slovenija | Trost, A., Scherr, W., Sturm, J. | 2023 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
Novel Capacitance Sensing Measurement Technique for Human-Robot Co-existence in: IEEE (Hrsg.), IEEE Austrochip Workshop on Microelectronics (Austrochip), 11-11 Oct 2022 | Hande, V., Scherr, W., MORADIAN BOVANLOO, M., Reddy, S., MIKHAIL, O., Zangl, H., Sturm, J. | 2022 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
System-in-Package Matching Network for RF Wireless Transceivers in: 24th Austrochip Conference, 19-19 Oct 2016, S. 35-39 | Batistell, G., Holzmann, T., Sterner, H., Sturm, J. | 2016 |
System-in-Package Matching Network for RF Wireless Transceivers. in: 4th Workshop Radio Frequency Engineering Working Group of Austrian Research Association, 17-18 Oct 2016, Villach | Batistell, G., Sturm, J. | 2016 |
Algorithms for De-embedding of RF Measurement Data for Balanced and Unbalanced Setups in: 52nd Conference on Microelectronics, Devices and Materials (MIDEM), 28-30 Sep 2016, Ankaran, Slovenia, S. 35-39 | Holzmann, T., Batistell, G., Sterner, H., Sturm, J. | 2016 |
Dynamically Reconfigurable Multiband Subsampling Receiver Architecture in: 4th Workshop Radio Frequency Engineering Working Group of Austrian Research Association, 17-18 Oct 2016, Villach | Kale, A., Sankara, R., Pasupureddi, V., Sturm, J. | 2016 |
A Tunable Gain and Tunable Band Active Balun LNA for IEEE 802.11ac WLAN Receivers in: 42nd European Solid-State Circuits Conference, 12-15 Sep 2016, Lausanne, S. 185-188 | Popuri, S., Pasupureddi, V., Sturm, J. | 2016 |
A Tunable Gain and Tunable Band Active Balun LNA for IEEE 802.11ac WLAN Receivers. in: 4th Workshop Radio Frequency Engineering Working Group of Austrian Research Association, 17-18 Oct 2016, Villach | Popuri, S., Pasupureddi, V., Sturm, J. | 2016 |
Analysis and Design of Differential Feedback CG LNA Topologies for Low Voltage Multistandard Wireless Receivers in: 24th Austrochip Conference, 19-19 Oct 2016, S. 24-29 | Renukaswamy, P., Pasupureddi, V., Sturm, J. | 2016 |
A 2.4 GHz, 1 dB Noise Figure Common-Gate LNA for WLAN Frontend in: 24th Telecommunications Forum TELFOR 2016, 22-23 Nov 2016, Belgrade, Serbia | Shetty, D., Pasupureddi, V., Sturm, J. | 2016 |
Artikel in Zeitschriften | ||
---|---|---|
Titel | Autor | Jahr |
Color recognition sensor in standard CMOS technology Solid-State Electronics | G. Batistell, V.C. Zhang, J. Sturm | 2014 |
Integrated CMOS Optical Sensor for Light Spectral Analysis IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 20(6) | J. Sturm, G. Batistell, L.M. Faller, V.C. Zhang | 2014 |
Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology Radioengineering, 23(1):319-327 | J. Sturm, M. Groinig, X. Xiang | 2014 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
Highly Integrated Low-Cost Color Sensors in: 8. Forschungsforum der österreichischen Fachhochschulen, Apr 2014, Kufstein | J. Sturm, G. Batistell | 2014 |
Decimation Filter and Tri-stimulus Colour Transformation for Ambient Colour Light Sensor in: MIDEM 2014, 50th International Conference on Microelectronics, Devices and Materials, 08-10 Oct 2014, Ljubljana, Slovenia | Zhang, V., Ofner, E., Raič, D., Sturm, J., Fant, A., Strle, D.; | 2014 |
Artikel in Zeitschriften | ||
---|---|---|
Titel | Autor | Jahr |
0.6-3-GHz Wideband Receiver RF Front-End With a Feedforward Noise and Distortion Cancellation Resistive-Feedback LNA IEEE Trans. Microw. Theory Techn., 60(2):387-392 | Wang, X., Sturm, J., Yan, N., Tan, X., Min, H. | 2012 |
Design of a reconfigurable gain low noise amplifier for multistandard receivers in 65nm technology e&i elektrotechnik und informationstechnik, S. 78-85 | Dali, S., Sturm, J. | 2010 |
Optical Receiver IC for CD/DVD/Blue-Laser Application IEEE Journal of Solid-State Circuits, 40(7) | Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, S., Zimmermann, H. | 2005 |
Vibrational analysis of derivatives of polyparaphenylene Synthetic Metals, 84:673-674 | Godon, C., Buisson, J.P., Lefrant, S., Sturm, J., Klemenc, M., Graupner, W., Leising, G., Mayer, M., Schlüter, A.D., Scherf, U. | 1997 |
Optical anisotropy in thin films of a blue electroluminescent conjugated polymer Thin Solid Films, 298:138-142 | Sturm, J., Tasch, S., Leising, G., Kowalszik, T., Singer, K., Toussaere, E., Zyss, J., Scherf, U. | 1997 |
Stable Poly(Para-Phenylene)s and their Application in Organic Light Emitting Devices Synthetic Metals, 71:2193-2196 | Grem, G., Martin, V., Meghdadi, F., Paar, C., Stampfl, J., Sturm, J., Tasch, S., Leising, G. | 1995 |
Konferenzbeiträge | ||
---|---|---|
Titel | Autor | Jahr |
Filter-less Color Sensor in Standard CMOS Technology in: 43th European Solid-State Device Research Conference - ESSDERC, Sep 2013, Bucharest, S. 123-126 | G. Batistell, J. Sturm | 2013 |
Simulation and Implementation of a Filter-less CMOS Color Detector in: 49th Conference on Microelectronics, Devices and Materials (MIDEM), Oct 2013, S. 167-172 | G. Batistell, J. Sturm | 2013 |
Standard CMOS Color Sensor based on laterally and vertically arranged photodiodes in: Austrochip, Oct 2013 | G. Batistell, J. Sturm | 2013 |
A 65nm CMOS Wide-band LNA with ContinuouslyTunable Gain from 0dB to 24dB in: IEEE International Symposium on Circuits and Systems - ISCAS, Jun 2013, Beijing, China, S. 733-736 | J. Sturm, X. Xinbo, H. Pretl | 2013 |
Performance Study of a 65nm CMOS Tuneable Gain LNA in: Austrochip, Oct 2012, S. 47-50 | X. Xiang, J. Sturm | 2012 |
Tunable Linear MOS Resistor for RF Applications in: Silicon Monolithic Integrated Circuits in RF Systems, Jan 2012, Santa Clara, CA | X. Xiang, J. Sturm | 2012 |
Temperature and Process Compensated Oscillator in 0.13 m CMOS IC Technology in: Austrochip 2011, 01-31 Oct 2011, S. 21-25 | Astrom, D., Kada, K., Sturm, J. | 2011 |
Second Order Effects in Multislope A/D Converters in: Austrochip 2011, Oct 2011, S. 11-15 | Geldin, M., Fant, A., Sturm, J. | 2011 |
Temperature and Process Compensated Oscillator in 0.13μm CMOS IC Technology in: Austrochip 2011, Oct 2011, S. 21-25 | Kumar, S., Kada, O., Astrom, D., Sturm, J. | 2011 |
Lateral Junction Color Detector in Standard CMOS Technology in: Austrochip 2010, Oct 2010, Villach | Batistell, G., Sturm, J. | 2010 |
Wideband LNAs with Noise and Distortion Cancelation in: Austrochip 2010, Oct 2010, Villach | Dali, S., Wang, X., Aichholzer, W., Sturm, J. | 2010 |
A 0.1-4GHz Resistive Feedback LNA with Feedforward Noise and Distortion Cancelation in: European Solid-State Circuits Conference, Sep 2010, S. 406-409 | X. Wang, W. Aichholzer, J. Sturm | 2010 |
CMOS Active Resistor for RF Applications in: Austrochip 2010, Oct 2010, Villach | Xiang, X., Sturm, J. | 2010 |
A 65nm CMOS RF Power Detector with Integrated Offset Storage in: TU Graz (Hrsg.), Austrochip 2009, Oct 2009, Graz, S. 5-8 | Aichholzer, W., Sturm, J. | 2009 |
Photodiode Modeling for Optoelectronic Integrated Circuits in: Semiconductor Conference Dresden (2008), 2008 | Sturm, J., Zimmermann, H. | 2008 |
A Programmable OEIC for Laser Applications in the Range from 405nm to 780nm in: European Solid-State Circuits Conference (2005), 2005, S. 439-442 | Seidl, C., Schatzmayr, H., Sturm, J., Groiss, S., Leifhelm, M., Spitzer, D., Schaunig, H., Zimmermann, H., | 2005 |
Optical Receiver IC for CD/DVD/Blue-Laser Application in: Design Automation and Test in Europe Conference (2005), 2005 | Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, G., Zimmermann, H. | 2005 |
High-Speed Variable Gain Transimpedance Amplifiers with Integrated Photodiodes in BiCMOS Technology in: European Solid-State Circuits Conference (2004), 2004 | Sturm, J. | 2004 |
Optical Receiver IC for CD/DVD/Blue-Laser Application in: European Solid-State Circuits Conference (2004), 2004, S. 267-270 | Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, S., Zimmermann, H. | 2004 |
Integrated photodiodes in standard BiCMOS technology in: SPIE Photonics West, 2003, San Jose, CA, S. 109-112 | Sturm, J., Hainz, S., Langguth, G., Zimmermann, H. | 2003 |
Low-Noise Sampling System for Photo Current Detection with Monolithically Integrated Photo Diodes in: European Solid-State Circuits Conference (2001), 0, S. 180-184 | Groiss, S., Sturm, J. | 2001 |
sonstige Publikationen | ||
---|---|---|
Titel | Autor | Jahr |
Patent (US 2007177702 - published) Receiving data over channels with intersymbol interference | Prete, E., Tatschl-Unterberger, E., Schobinger, M., DaDalt, N., Sturm J., Sanders, A., Gardellini, D., Neurohr N. | 2007 |
Patent (DE 102004009684 - published) Transimpedance amplifier system for high switching frequency for integrated optical sensors for read-out of compact (CD) and digital versatile discs (DVD) etc., with current input and output voltage dependent on input current | Sturm, J. | 2005 |
Patent (DE 102004009685) Power amplifier arrangement, has transistors with collector terminals respectively connected to input and output, and capacitive storage unit and potential buffer serially connected between output and node | Sturm, J., Groiss, S. | 2005 |
Patent (US 2006008933 A1) Method for producing an integrated pin diode and corresponding circuit | Sturm, J., Müller, K.H. | 2005 |
Patent (DE 10126379) Schaltungsanordnung | Sturm, J. | 2003 |
Patent (DE 10129014 - dead) Signal rise time optimization circuit, especially for sensor signal, signal path for input signal, second signal path for correction signal derived from input signal, signal addition function | Sturm, J. | 2003 |
Patent (US 2002070888) Circuit arrangement for conversion of an input current signal to a corresponding digital output signal | Sturm, J., Groiss, G. | 2002 |
Patent (DE 10058952) Circuit for converting analog input signal to corresponding analog output signal has transconductance amplifiers converting input analog voltage signals to output current signals | Sturm, J., Groiss, S. | 2002 |