Titel | Autor | Jahr |
---|---|---|
Adaptive Plate for 3D Printer | Ahmed Mohamed Ibrahim Adam | 2022 |
Titel | Autor | Jahr |
---|---|---|
Adaptive Plate for 3D Printer | Ahmed Mohamed Ibrahim Adam | 2022 |
Titel | Autor | Jahr |
---|
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2025 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Verbundwerkstoffe |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das übergeordnete Ziel des BeSoGreat-Projekts ist die Schaffung eines regionalen Mehrwerts durch innovative Lösungen in der Bioökonomie und damit die Stärkung der Rolle von Akteuren des Produktionssektors in Forschung und Entwicklung beim Übergang zu einer Kreislaufwirtschaft auf grenzüberschreitender Ebene.
BeSoGreat zielt auf die Inwertsetzung von Nebenprodukten wie Biertreber und die grüne Wirtschaft als Chance für:
-Die Förderung der Entwicklung und Innovation regionaler Wertschöpfungsketten;
-Die Schaffung eines regionalen Mehrwerts durch Sensibilisierung für die Kreislaufwirtschaft;
-Die Integration von Sektoren der regionalen Kreislaufwirtschaft und Bioökonomie durch die Zusammenarbeit zwischen der Landwirtschaft, mit diversifizierten Aktivitäten wie Handwerksbrauereien und der Herstellung von langlebigen Gegenständen aus Biokunststoffen;
-Die Unterstützung regionaler Kreislaufwirtschafts- und Bioökonomieansätze für die grenzüberschreitende Zusammenarbeit unter Einbeziehung von Akteuren aus dem Agrar- und Produktionssektor auf der Grundlage der Valorisierung von Biertreber zur Herstellung von Bioverbundwerstoffen;
-Die Förderung der Entwicklung innovativer Beschäftigungsmöglichkeiten im Bereich der Kreislaufwirtschaft und der Bioökonomie;
-Die Förderung des grenzüberschreitenden Austauschs zwischen Wirtschaftsakteuren durch den Austausch bewährter Praktiken und die Durchführung von Pilotaktionen zur Innovation der Produktionsprozesse durch die Einführung fortschrittlicher Technologien wie dem 3D-Druck;
-Die Förderung der grenzüberschreitenden Forschung, Entwicklung und Innovation im Bereich der Kreislaufwirtschaft und der Bioökonomie durch die Zusammenarbeit zwischen Unternehmen und Forschungs- und Bildungseinrichtungen.
- Autonome Provinz Bozen – Südtirol (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- FH Kufstein Tirol Bildung GmbH
- Crossing Srl
- Nuova Deroma S.r.l
- COMET scrl
Laufzeit | Juli/2023 - Juli/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Kunststofftechnik |
Studiengang | |
Forschungsprogramm | FFG - Basisprogramm Ausschreibung 2023 |
Förderinstitution/Auftraggeber |
Durch das Recycling von Kunststoffabfällen können große Mengen an klimarelevanten Treibhausgasen vermieden werden. Aus dieser Motivation heraus hat sich die Trastic GmbH das Upcycling von Kunststoffabfällen zu individuellen und hochwertigen Möbeln zum Ziel gesetzt. Zu diesem Zweck hat sie ein Verfahren zur Herstellung von Möbelplatten aus recyceltem Kunststoff entwickelt. Allerdings lassen sich mit dem entwickelten Verfahren nur relativ einfache Geometrien herstellen. Ziel dieses Projekts ist es daher, einen Prozess zu entwickeln, mit dem sich farblich und mechanisch integrierbare Teile mit komplexeren Geometrien zur Aufwertung der gepressten Möbelstücke herstellen lassen. Dieser Prozess sollte in der Lage sein, die gleichen Rohstoffe wie das bisher entwickelte Pressverfahren zu verarbeiten, ebenso wie die dabei anfallenden Abfälle und Verschnitte. In diesem Zusammenhang ist die additive Fertigung auf Basis der Materialextrusion besonders interessant. Konkret sollen die Materialien in Form von Pellets verarbeitet werden, damit durch den Wegfall der Filamentherstellung massiv Energie gespart und die notwendige Verarbeitungsgeschwindigkeit erreicht wird.
- FFG (Fördergeber/Auftraggeber)
- Trastic GmbH (Lead Partner)
Laufzeit | Juni/2023 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstofftechnik |
Studiengang | |
Forschungsprogramm | Kleine Prototypförderung |
Förderinstitution/Auftraggeber |
Diese Forschung zielte darauf ab, das Potenzial des 5-Achsen-Drucks mit kontinuierlichen Fasern zu erforschen, insbesondere durch die Integration von Rotationsdruck und 3D-gedruckten Formen. Das Ziel war es, hochsteife Strukturen zu schaffen, indem kontinuierliche Fasern auf eine rotierende Form gedruckt wurden, die dann vom Endprodukt abgetrennt werden konnte. Da es nur eine begrenzte Anzahl von Versuchen gab, diese Techniken zu integrieren, bot diese Forschung eine wertvolle Gelegenheit zur Weiterentwicklung der 3D-Druck-Technologie.
- AWS Austria Wirtschaftsservice Gesellschaft mbH (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Jänner/2022 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Produktion der Zukunft |
Förderinstitution/Auftraggeber |
Nanogoes3D vereint verschiedene Disziplinen für die Entwicklung von 3D-gedruckten Sohlen für individualisierte Schuhe im Sportbereich. Die Kombination aus Nanomaterialien und 3D-Druck-Technologie ermöglicht die Herstellung einer flexiblen, leichten und kostengünstigen intelligenten Schuheinlegesohle mit antibakteriellen Eigenschaften.
Die Forschung gliedert sich in drei Bereiche:
a) Entwicklung geeigneter Nanomaterialien für sensorische und antibakterielle Eigenschaften;
b) Design und Entwicklung von 3D-Einlegesohlen mit hervorragenden physikalischen und mechanischen Eigenschaften;
c) Entwicklung eines 3D-gedruckten intelligenten Einlegesohlen-Demonstrators durch Etablierung des optimalen Benutzerschnittstellenkonzepts auf der Grundlage von FEM-Simulationen.
- FFG (Fördergeber/Auftraggeber)
- Wood K plus - Kompetenzzentrum Holz GmbH (Lead Partner)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
- Maierhofer GmbH
- Kästle GmbH
Laufzeit | März/2022 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | FFG - BRIDGE 1 |
Förderinstitution/Auftraggeber |
Aktuelle Systeme zur Prothesenversorgung bestehen aus einem Silikonliner, der direkt am Stumpf anliegt, und einem äußeren Schaft, der einwirkende Kräfte aufnehmen und ableiten soll. Da sich die Physiologie der Nutzer*innen oft schon über den Tagesverlauf ändert, entstehen Schmerzen und verminderter Tragekomfort durch Kräfte, die auf den Stumpf einwirken. Auch für die Anpassung des Schaftes ist es notwendig für die Orthopädietechniker*innen, diese Krafteinwirkung abzuschätzen und entsprechend zu verteilen. Aktuell gibt es kein bestehendes System zur Messung und durchgehenden Überwachung dieser Kräfte. In AMASE entwickeln wir Konzepte und Methoden im Bereich additive gefertigte kapazitive Sensorik und Simulation zur Messung und echtzeitfähigen Visualisierung der Kraftverteilung in Prothesenschäften.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Silicon Austria Labs GmbH
- Saphenus Medical Technology GmbH
Laufzeit | Februar/2021 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
Currently available medical assistance products (orthoses, rehabilitation equipment, etc.) are often laborious to manufacture (Functional Need FN1), the fabrication results in a considerable amount of waste (Social Need SN1), e.g. through casting molds, and so leads to expensive products (SN2). At the same time, products are optically not appealing (SN3), heavy (FN2) and lack individualization and functionalization. Similar to clothes with ready-made sizes, they often do not fit the respective user (FN3). Fit and function are not monitored (FN4), which can cause pain, infections and other injuries. This is where 3D-printing can offer a sustainable. 3D-printing is an essential technology to make today's manufacturing more resource-efficient, sustainable and flexible. However, 3D printing has not yet been able to exploit its potential for medical devices due to the following technological needs:
- (TN1) Material can only be stacked in layers.
- (TN2) Material combinations have not yet been investigated thoroughly.
- (TN3) Support structures are complex and cannot be released easily.
- (TN4) Functional components are not considered in the design and manufacturing process.
iLEAD starts here and examines the following areas (Goals):
- (G1) Multimaterial 3D-printing: material structure, compatibility analyses and print head design (addresses (FN1, SN1, TN2,3)).
- (G2) Lightweight lattice and simulation-based optimization (addresses (SN1,3, FN2, TN3)).
- (G3) 3D-printing strategies for 5-axis printing (addresses (FN2, TN1,3)).
- (G4) Intelligent functionalization of products (addresses (FN4, TN4)).
- (G5) Holistic participatory development process including users (addresses SN3, FN3,4).
By 3D-printing of endless fibre composites, load-bearing and adaptive structures can be integrated into medical assistance products (e.g. shafts for legs). Combination of different materials enables to adjust the stiffness of lightweight lattices and to integrate sensors at relevant points during production (e.g. individualized splints with monitoring of training state) for the first time. The developed technology enables products to be individualized, exhibit high mechanical strength, while at the same time being cost-efficient, material- and weight-saving. iLEAD aims to produce medical assistance products WITH AND FOR the users by continuous user-centered-design, involving future users and experts in the field of therapy. Thus, iLEAD leads to an international leadership and pioneering position in 3D-printing technology with focus on medical assistance products.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Februar/2021 - Dezember/2022 |
Homepage | Nähere Informationen finden Sie auf www.efre.gv.at |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Fertigungstechnik |
Studiengänge | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-REACT |
Förderinstitution/Auftraggeber |
Die drei Partner arbeiten im Projekt EFRE Smarter Leichtbau 4.0 seit dem Jahr 2018 erfolgreich zusammen. Die Schwerpunkte dieses Projekts waren bzw. sind:
• Leichtbau mit Faserverbundwerkstoffen zur Effizienzsteigerung und besseren Nachhaltigkeit für unterschiedlichste Anwendungen
• Weiterentwicklung der Faserwerkstoffe insbesonders in Richtung nachwachsende Rohstoffe
• Integration von Sensorik für smarte Funktionalität bzw. zur effizienten Prozesssteuerung
• Zerstörungsfreie Werkstoffprüfung und Prozessanalytik-Technologie
Parallel dazu wurden die Forscher dieser Technologien im Rahmen des Trainingsprogramms „Scientrepreneur – Basiswissen für Gründer*innen“ hinsichtlich unternehmerischer Verwertung sensibilisiert und ihnen Grundkompetenzen unternehmerischen Denkens und Handelns vermittelt. Das Trainingsprogramm wurde für Forscher*innen der beteiligten Instiutionen zweimal abgehalten.
Darüber hinaus wurde ein „ideales“ gesamtheitliches Konzept zur Implementierung von Unternehmertum an Hochschulen und Forschungseinrichtungen entwickelt. Dieses Konzept beinhaltet nicht nur einen Spin-off-Prozess auf der operativen Ebene, sondern auch Aufgaben, Prozesse und Methoden auf der normativen und strategischen Ebene einer Organisation.
Gemeinsame Projekteinreichungen mit Unternehmen der Region, die auf den Ergebnissen aufbauen (beispielsweise Prosthetics 4.0), wissenschaftliche Publikationen bis hin zur Vorstellung des Projekts im Rahmen der Veranstaltung Europa in meiner Region als eines von 3 Kärntner Projekten belegen die erfolgreiche Zusammarbeit der Partner und es konnte ein signifikanter Mehrwert durch die Kooperation erreicht werden.
Ende des Jahres 2019 hat die Europäische Kommission den europäischen Grünen Deal vorgestellt, um Maßnahmen zu setzen um die Bedrohung von Klimawandel und Umweltzerstörung abzuwenden und der gleichzeitig eine Wachstumsstrategie für den Übergang zu einer modernen, ressourceneffizienten Wirtschaft darstellt.
Die aktuelle Krise zufolge COVID 19 führt zusätzlich zu einem Umdenken im Hinblick auf Lieferketten und Versorgung weit über Lebensmittel hinaus.
Beide Aspekte sprechen für Smarten Leichtbau insbesonders mit nachwachsenden Rohstoffen.
Leichtbau in allen Anwendungen ist ein notwendiger Aspekt um Ressourcen zu sparen. Neben den primären Ressourcen in der Herstellung ermöglicht er vor allem bei Konstruktionen die in irgendeiner Form bewegt werden, Einsparungen im Betrieb durch geringeres Gewicht. Der Einsatz von nachwachsenden Rohstoffen, insbesonders als Verstärkungsfaser ermöglicht den Einsatz regionaler Rohstoffe, und regionaler Fertigung. Der Einsatz von Sensorik ermöglicht eine Schnittstelle zur digitalen Welt und trägt darüber hinaus zur weiteren Ressourceneinsparung bei, da Materialien optimal ausgenutzt werden können.
Auf diese Eckpunkte und die bereits erreichten Ergebnisse baut der eigenständige EFRE Antrag Smarter Leichtbau 4.1 auf, der einen signfikanten neuen Schritt in der Arbeit und der Kooperation darstellt.
Dieses Projekt wird aus Mitteln des EFRE Europäischen Fonds für regionale Entwicklung kofinanziert.
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
- W3C Wood Carinthian Competence Center (Lead Partner)
- Silicon Austria Labs GmbH
Laufzeit | Jänner/2020 - März/2022 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Automatisierungstechnik |
Studiengänge | |
Forschungsprogramm | INTERREG VA SI-AT |
Förderinstitution/Auftraggeber |
Das übergeordnete Projektziel war die Stärkung von grenzübergreifendem Wettbewerb, Forschung und Innovationdurch die Einrichtung einer gemeinsamen AM-Technologieplattform. Im ProjektASAM wurde die Kooperation der beiden Hochtechnologiestandorte Region Ljubljana und Technologiepark Villach im Schwerpunktbereich „Additive Manufacturing AM“ auf ein professionelles Niveau angehoben und es wurde eine gemeinsamegrenzübergreifende AM-Plattform etabliert. Mittelfristige Zielsetzung war es, die Makroregion (Slowenien, Österreich, Norditalien, Kroatien) zu einer europäischen Leaderregion für AM-Technologien zu entwickeln.
Kofinanziert durch den Europäischen Fonds für regionale Entwicklung
The overarching project objective was to strengthen cross-border competition, research and innovation by establishing a joint AM technology platform. In the ASAM project, cooperation between the two high-techlocations Ljubljana Region and Villach Technology Park in the key area of`Additive Manufacturing AM´ was raised to a professional level and a joint cross-border AM platform was established. The medium-term objective was to develop the macro-region (Slovenia, Austria, northern Italy, Croatia) into a European regional leader for AM technologies.
Co-financed by the European Regional Development Fond
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | März/2022 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | FFG - BRIDGE 1 |
Förderinstitution/Auftraggeber |
Aktuelle Systeme zur Prothesenversorgung bestehen aus einem Silikonliner, der direkt am Stumpf anliegt, und einem äußeren Schaft, der einwirkende Kräfte aufnehmen und ableiten soll. Da sich die Physiologie der Nutzer*innen oft schon über den Tagesverlauf ändert, entstehen Schmerzen und verminderter Tragekomfort durch Kräfte, die auf den Stumpf einwirken. Auch für die Anpassung des Schaftes ist es notwendig für die Orthopädietechniker*innen, diese Krafteinwirkung abzuschätzen und entsprechend zu verteilen. Aktuell gibt es kein bestehendes System zur Messung und durchgehenden Überwachung dieser Kräfte. In AMASE entwickeln wir Konzepte und Methoden im Bereich additive gefertigte kapazitive Sensorik und Simulation zur Messung und echtzeitfähigen Visualisierung der Kraftverteilung in Prothesenschäften.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Silicon Austria Labs GmbH
- Saphenus Medical Technology GmbH
Laufzeit | Jänner/2024 - Dezember/2025 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Verbundwerkstoffe |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das übergeordnete Ziel des BeSoGreat-Projekts ist die Schaffung eines regionalen Mehrwerts durch innovative Lösungen in der Bioökonomie und damit die Stärkung der Rolle von Akteuren des Produktionssektors in Forschung und Entwicklung beim Übergang zu einer Kreislaufwirtschaft auf grenzüberschreitender Ebene.
BeSoGreat zielt auf die Inwertsetzung von Nebenprodukten wie Biertreber und die grüne Wirtschaft als Chance für:
-Die Förderung der Entwicklung und Innovation regionaler Wertschöpfungsketten;
-Die Schaffung eines regionalen Mehrwerts durch Sensibilisierung für die Kreislaufwirtschaft;
-Die Integration von Sektoren der regionalen Kreislaufwirtschaft und Bioökonomie durch die Zusammenarbeit zwischen der Landwirtschaft, mit diversifizierten Aktivitäten wie Handwerksbrauereien und der Herstellung von langlebigen Gegenständen aus Biokunststoffen;
-Die Unterstützung regionaler Kreislaufwirtschafts- und Bioökonomieansätze für die grenzüberschreitende Zusammenarbeit unter Einbeziehung von Akteuren aus dem Agrar- und Produktionssektor auf der Grundlage der Valorisierung von Biertreber zur Herstellung von Bioverbundwerstoffen;
-Die Förderung der Entwicklung innovativer Beschäftigungsmöglichkeiten im Bereich der Kreislaufwirtschaft und der Bioökonomie;
-Die Förderung des grenzüberschreitenden Austauschs zwischen Wirtschaftsakteuren durch den Austausch bewährter Praktiken und die Durchführung von Pilotaktionen zur Innovation der Produktionsprozesse durch die Einführung fortschrittlicher Technologien wie dem 3D-Druck;
-Die Förderung der grenzüberschreitenden Forschung, Entwicklung und Innovation im Bereich der Kreislaufwirtschaft und der Bioökonomie durch die Zusammenarbeit zwischen Unternehmen und Forschungs- und Bildungseinrichtungen.
- Autonome Provinz Bozen – Südtirol (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- FH Kufstein Tirol Bildung GmbH
- Crossing Srl
- Nuova Deroma S.r.l
- COMET scrl
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | März/2022 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | FFG - BRIDGE 1 |
Förderinstitution/Auftraggeber |
Aktuelle Systeme zur Prothesenversorgung bestehen aus einem Silikonliner, der direkt am Stumpf anliegt, und einem äußeren Schaft, der einwirkende Kräfte aufnehmen und ableiten soll. Da sich die Physiologie der Nutzer*innen oft schon über den Tagesverlauf ändert, entstehen Schmerzen und verminderter Tragekomfort durch Kräfte, die auf den Stumpf einwirken. Auch für die Anpassung des Schaftes ist es notwendig für die Orthopädietechniker*innen, diese Krafteinwirkung abzuschätzen und entsprechend zu verteilen. Aktuell gibt es kein bestehendes System zur Messung und durchgehenden Überwachung dieser Kräfte. In AMASE entwickeln wir Konzepte und Methoden im Bereich additive gefertigte kapazitive Sensorik und Simulation zur Messung und echtzeitfähigen Visualisierung der Kraftverteilung in Prothesenschäften.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Silicon Austria Labs GmbH
- Saphenus Medical Technology GmbH
Laufzeit | Jänner/2022 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Produktion der Zukunft |
Förderinstitution/Auftraggeber |
Nanogoes3D vereint verschiedene Disziplinen für die Entwicklung von 3D-gedruckten Sohlen für individualisierte Schuhe im Sportbereich. Die Kombination aus Nanomaterialien und 3D-Druck-Technologie ermöglicht die Herstellung einer flexiblen, leichten und kostengünstigen intelligenten Schuheinlegesohle mit antibakteriellen Eigenschaften.
Die Forschung gliedert sich in drei Bereiche:
a) Entwicklung geeigneter Nanomaterialien für sensorische und antibakterielle Eigenschaften;
b) Design und Entwicklung von 3D-Einlegesohlen mit hervorragenden physikalischen und mechanischen Eigenschaften;
c) Entwicklung eines 3D-gedruckten intelligenten Einlegesohlen-Demonstrators durch Etablierung des optimalen Benutzerschnittstellenkonzepts auf der Grundlage von FEM-Simulationen.
- FFG (Fördergeber/Auftraggeber)
- Wood K plus - Kompetenzzentrum Holz GmbH (Lead Partner)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
- Maierhofer GmbH
- Kästle GmbH
Laufzeit | Juli/2023 - Juli/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Kunststofftechnik |
Studiengang | |
Forschungsprogramm | FFG - Basisprogramm Ausschreibung 2023 |
Förderinstitution/Auftraggeber |
Durch das Recycling von Kunststoffabfällen können große Mengen an klimarelevanten Treibhausgasen vermieden werden. Aus dieser Motivation heraus hat sich die Trastic GmbH das Upcycling von Kunststoffabfällen zu individuellen und hochwertigen Möbeln zum Ziel gesetzt. Zu diesem Zweck hat sie ein Verfahren zur Herstellung von Möbelplatten aus recyceltem Kunststoff entwickelt. Allerdings lassen sich mit dem entwickelten Verfahren nur relativ einfache Geometrien herstellen. Ziel dieses Projekts ist es daher, einen Prozess zu entwickeln, mit dem sich farblich und mechanisch integrierbare Teile mit komplexeren Geometrien zur Aufwertung der gepressten Möbelstücke herstellen lassen. Dieser Prozess sollte in der Lage sein, die gleichen Rohstoffe wie das bisher entwickelte Pressverfahren zu verarbeiten, ebenso wie die dabei anfallenden Abfälle und Verschnitte. In diesem Zusammenhang ist die additive Fertigung auf Basis der Materialextrusion besonders interessant. Konkret sollen die Materialien in Form von Pellets verarbeitet werden, damit durch den Wegfall der Filamentherstellung massiv Energie gespart und die notwendige Verarbeitungsgeschwindigkeit erreicht wird.
- FFG (Fördergeber/Auftraggeber)
- Trastic GmbH (Lead Partner)
Laufzeit | Jänner/2024 - Dezember/2025 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Verbundwerkstoffe |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das übergeordnete Ziel des BeSoGreat-Projekts ist die Schaffung eines regionalen Mehrwerts durch innovative Lösungen in der Bioökonomie und damit die Stärkung der Rolle von Akteuren des Produktionssektors in Forschung und Entwicklung beim Übergang zu einer Kreislaufwirtschaft auf grenzüberschreitender Ebene.
BeSoGreat zielt auf die Inwertsetzung von Nebenprodukten wie Biertreber und die grüne Wirtschaft als Chance für:
-Die Förderung der Entwicklung und Innovation regionaler Wertschöpfungsketten;
-Die Schaffung eines regionalen Mehrwerts durch Sensibilisierung für die Kreislaufwirtschaft;
-Die Integration von Sektoren der regionalen Kreislaufwirtschaft und Bioökonomie durch die Zusammenarbeit zwischen der Landwirtschaft, mit diversifizierten Aktivitäten wie Handwerksbrauereien und der Herstellung von langlebigen Gegenständen aus Biokunststoffen;
-Die Unterstützung regionaler Kreislaufwirtschafts- und Bioökonomieansätze für die grenzüberschreitende Zusammenarbeit unter Einbeziehung von Akteuren aus dem Agrar- und Produktionssektor auf der Grundlage der Valorisierung von Biertreber zur Herstellung von Bioverbundwerstoffen;
-Die Förderung der Entwicklung innovativer Beschäftigungsmöglichkeiten im Bereich der Kreislaufwirtschaft und der Bioökonomie;
-Die Förderung des grenzüberschreitenden Austauschs zwischen Wirtschaftsakteuren durch den Austausch bewährter Praktiken und die Durchführung von Pilotaktionen zur Innovation der Produktionsprozesse durch die Einführung fortschrittlicher Technologien wie dem 3D-Druck;
-Die Förderung der grenzüberschreitenden Forschung, Entwicklung und Innovation im Bereich der Kreislaufwirtschaft und der Bioökonomie durch die Zusammenarbeit zwischen Unternehmen und Forschungs- und Bildungseinrichtungen.
- Autonome Provinz Bozen – Südtirol (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- FH Kufstein Tirol Bildung GmbH
- Crossing Srl
- Nuova Deroma S.r.l
- COMET scrl
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Februar/2021 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
Currently available medical assistance products (orthoses, rehabilitation equipment, etc.) are often laborious to manufacture (Functional Need FN1), the fabrication results in a considerable amount of waste (Social Need SN1), e.g. through casting molds, and so leads to expensive products (SN2). At the same time, products are optically not appealing (SN3), heavy (FN2) and lack individualization and functionalization. Similar to clothes with ready-made sizes, they often do not fit the respective user (FN3). Fit and function are not monitored (FN4), which can cause pain, infections and other injuries. This is where 3D-printing can offer a sustainable. 3D-printing is an essential technology to make today's manufacturing more resource-efficient, sustainable and flexible. However, 3D printing has not yet been able to exploit its potential for medical devices due to the following technological needs:
- (TN1) Material can only be stacked in layers.
- (TN2) Material combinations have not yet been investigated thoroughly.
- (TN3) Support structures are complex and cannot be released easily.
- (TN4) Functional components are not considered in the design and manufacturing process.
iLEAD starts here and examines the following areas (Goals):
- (G1) Multimaterial 3D-printing: material structure, compatibility analyses and print head design (addresses (FN1, SN1, TN2,3)).
- (G2) Lightweight lattice and simulation-based optimization (addresses (SN1,3, FN2, TN3)).
- (G3) 3D-printing strategies for 5-axis printing (addresses (FN2, TN1,3)).
- (G4) Intelligent functionalization of products (addresses (FN4, TN4)).
- (G5) Holistic participatory development process including users (addresses SN3, FN3,4).
By 3D-printing of endless fibre composites, load-bearing and adaptive structures can be integrated into medical assistance products (e.g. shafts for legs). Combination of different materials enables to adjust the stiffness of lightweight lattices and to integrate sensors at relevant points during production (e.g. individualized splints with monitoring of training state) for the first time. The developed technology enables products to be individualized, exhibit high mechanical strength, while at the same time being cost-efficient, material- and weight-saving. iLEAD aims to produce medical assistance products WITH AND FOR the users by continuous user-centered-design, involving future users and experts in the field of therapy. Thus, iLEAD leads to an international leadership and pioneering position in 3D-printing technology with focus on medical assistance products.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | März/2022 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | FFG - BRIDGE 1 |
Förderinstitution/Auftraggeber |
Aktuelle Systeme zur Prothesenversorgung bestehen aus einem Silikonliner, der direkt am Stumpf anliegt, und einem äußeren Schaft, der einwirkende Kräfte aufnehmen und ableiten soll. Da sich die Physiologie der Nutzer*innen oft schon über den Tagesverlauf ändert, entstehen Schmerzen und verminderter Tragekomfort durch Kräfte, die auf den Stumpf einwirken. Auch für die Anpassung des Schaftes ist es notwendig für die Orthopädietechniker*innen, diese Krafteinwirkung abzuschätzen und entsprechend zu verteilen. Aktuell gibt es kein bestehendes System zur Messung und durchgehenden Überwachung dieser Kräfte. In AMASE entwickeln wir Konzepte und Methoden im Bereich additive gefertigte kapazitive Sensorik und Simulation zur Messung und echtzeitfähigen Visualisierung der Kraftverteilung in Prothesenschäften.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Silicon Austria Labs GmbH
- Saphenus Medical Technology GmbH
Laufzeit | Jänner/2022 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Produktion der Zukunft |
Förderinstitution/Auftraggeber |
Nanogoes3D vereint verschiedene Disziplinen für die Entwicklung von 3D-gedruckten Sohlen für individualisierte Schuhe im Sportbereich. Die Kombination aus Nanomaterialien und 3D-Druck-Technologie ermöglicht die Herstellung einer flexiblen, leichten und kostengünstigen intelligenten Schuheinlegesohle mit antibakteriellen Eigenschaften.
Die Forschung gliedert sich in drei Bereiche:
a) Entwicklung geeigneter Nanomaterialien für sensorische und antibakterielle Eigenschaften;
b) Design und Entwicklung von 3D-Einlegesohlen mit hervorragenden physikalischen und mechanischen Eigenschaften;
c) Entwicklung eines 3D-gedruckten intelligenten Einlegesohlen-Demonstrators durch Etablierung des optimalen Benutzerschnittstellenkonzepts auf der Grundlage von FEM-Simulationen.
- FFG (Fördergeber/Auftraggeber)
- Wood K plus - Kompetenzzentrum Holz GmbH (Lead Partner)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
- Maierhofer GmbH
- Kästle GmbH
Laufzeit | Juni/2023 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstofftechnik |
Studiengang | |
Forschungsprogramm | Kleine Prototypförderung |
Förderinstitution/Auftraggeber |
Diese Forschung zielte darauf ab, das Potenzial des 5-Achsen-Drucks mit kontinuierlichen Fasern zu erforschen, insbesondere durch die Integration von Rotationsdruck und 3D-gedruckten Formen. Das Ziel war es, hochsteife Strukturen zu schaffen, indem kontinuierliche Fasern auf eine rotierende Form gedruckt wurden, die dann vom Endprodukt abgetrennt werden konnte. Da es nur eine begrenzte Anzahl von Versuchen gab, diese Techniken zu integrieren, bot diese Forschung eine wertvolle Gelegenheit zur Weiterentwicklung der 3D-Druck-Technologie.
- AWS Austria Wirtschaftsservice Gesellschaft mbH (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Juli/2023 - Juli/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Kunststofftechnik |
Studiengang | |
Forschungsprogramm | FFG - Basisprogramm Ausschreibung 2023 |
Förderinstitution/Auftraggeber |
Durch das Recycling von Kunststoffabfällen können große Mengen an klimarelevanten Treibhausgasen vermieden werden. Aus dieser Motivation heraus hat sich die Trastic GmbH das Upcycling von Kunststoffabfällen zu individuellen und hochwertigen Möbeln zum Ziel gesetzt. Zu diesem Zweck hat sie ein Verfahren zur Herstellung von Möbelplatten aus recyceltem Kunststoff entwickelt. Allerdings lassen sich mit dem entwickelten Verfahren nur relativ einfache Geometrien herstellen. Ziel dieses Projekts ist es daher, einen Prozess zu entwickeln, mit dem sich farblich und mechanisch integrierbare Teile mit komplexeren Geometrien zur Aufwertung der gepressten Möbelstücke herstellen lassen. Dieser Prozess sollte in der Lage sein, die gleichen Rohstoffe wie das bisher entwickelte Pressverfahren zu verarbeiten, ebenso wie die dabei anfallenden Abfälle und Verschnitte. In diesem Zusammenhang ist die additive Fertigung auf Basis der Materialextrusion besonders interessant. Konkret sollen die Materialien in Form von Pellets verarbeitet werden, damit durch den Wegfall der Filamentherstellung massiv Energie gespart und die notwendige Verarbeitungsgeschwindigkeit erreicht wird.
- FFG (Fördergeber/Auftraggeber)
- Trastic GmbH (Lead Partner)
Laufzeit | Jänner/2020 - März/2022 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Automatisierungstechnik |
Studiengänge | |
Forschungsprogramm | INTERREG VA SI-AT |
Förderinstitution/Auftraggeber |
Das übergeordnete Projektziel war die Stärkung von grenzübergreifendem Wettbewerb, Forschung und Innovationdurch die Einrichtung einer gemeinsamen AM-Technologieplattform. Im ProjektASAM wurde die Kooperation der beiden Hochtechnologiestandorte Region Ljubljana und Technologiepark Villach im Schwerpunktbereich „Additive Manufacturing AM“ auf ein professionelles Niveau angehoben und es wurde eine gemeinsamegrenzübergreifende AM-Plattform etabliert. Mittelfristige Zielsetzung war es, die Makroregion (Slowenien, Österreich, Norditalien, Kroatien) zu einer europäischen Leaderregion für AM-Technologien zu entwickeln.
Kofinanziert durch den Europäischen Fonds für regionale Entwicklung
The overarching project objective was to strengthen cross-border competition, research and innovation by establishing a joint AM technology platform. In the ASAM project, cooperation between the two high-techlocations Ljubljana Region and Villach Technology Park in the key area of`Additive Manufacturing AM´ was raised to a professional level and a joint cross-border AM platform was established. The medium-term objective was to develop the macro-region (Slovenia, Austria, northern Italy, Croatia) into a European regional leader for AM technologies.
Co-financed by the European Regional Development Fond
Laufzeit | Februar/2021 - Dezember/2022 |
Homepage | Nähere Informationen finden Sie auf www.efre.gv.at |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Fertigungstechnik |
Studiengänge | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-REACT |
Förderinstitution/Auftraggeber |
Die drei Partner arbeiten im Projekt EFRE Smarter Leichtbau 4.0 seit dem Jahr 2018 erfolgreich zusammen. Die Schwerpunkte dieses Projekts waren bzw. sind:
• Leichtbau mit Faserverbundwerkstoffen zur Effizienzsteigerung und besseren Nachhaltigkeit für unterschiedlichste Anwendungen
• Weiterentwicklung der Faserwerkstoffe insbesonders in Richtung nachwachsende Rohstoffe
• Integration von Sensorik für smarte Funktionalität bzw. zur effizienten Prozesssteuerung
• Zerstörungsfreie Werkstoffprüfung und Prozessanalytik-Technologie
Parallel dazu wurden die Forscher dieser Technologien im Rahmen des Trainingsprogramms „Scientrepreneur – Basiswissen für Gründer*innen“ hinsichtlich unternehmerischer Verwertung sensibilisiert und ihnen Grundkompetenzen unternehmerischen Denkens und Handelns vermittelt. Das Trainingsprogramm wurde für Forscher*innen der beteiligten Instiutionen zweimal abgehalten.
Darüber hinaus wurde ein „ideales“ gesamtheitliches Konzept zur Implementierung von Unternehmertum an Hochschulen und Forschungseinrichtungen entwickelt. Dieses Konzept beinhaltet nicht nur einen Spin-off-Prozess auf der operativen Ebene, sondern auch Aufgaben, Prozesse und Methoden auf der normativen und strategischen Ebene einer Organisation.
Gemeinsame Projekteinreichungen mit Unternehmen der Region, die auf den Ergebnissen aufbauen (beispielsweise Prosthetics 4.0), wissenschaftliche Publikationen bis hin zur Vorstellung des Projekts im Rahmen der Veranstaltung Europa in meiner Region als eines von 3 Kärntner Projekten belegen die erfolgreiche Zusammarbeit der Partner und es konnte ein signifikanter Mehrwert durch die Kooperation erreicht werden.
Ende des Jahres 2019 hat die Europäische Kommission den europäischen Grünen Deal vorgestellt, um Maßnahmen zu setzen um die Bedrohung von Klimawandel und Umweltzerstörung abzuwenden und der gleichzeitig eine Wachstumsstrategie für den Übergang zu einer modernen, ressourceneffizienten Wirtschaft darstellt.
Die aktuelle Krise zufolge COVID 19 führt zusätzlich zu einem Umdenken im Hinblick auf Lieferketten und Versorgung weit über Lebensmittel hinaus.
Beide Aspekte sprechen für Smarten Leichtbau insbesonders mit nachwachsenden Rohstoffen.
Leichtbau in allen Anwendungen ist ein notwendiger Aspekt um Ressourcen zu sparen. Neben den primären Ressourcen in der Herstellung ermöglicht er vor allem bei Konstruktionen die in irgendeiner Form bewegt werden, Einsparungen im Betrieb durch geringeres Gewicht. Der Einsatz von nachwachsenden Rohstoffen, insbesonders als Verstärkungsfaser ermöglicht den Einsatz regionaler Rohstoffe, und regionaler Fertigung. Der Einsatz von Sensorik ermöglicht eine Schnittstelle zur digitalen Welt und trägt darüber hinaus zur weiteren Ressourceneinsparung bei, da Materialien optimal ausgenutzt werden können.
Auf diese Eckpunkte und die bereits erreichten Ergebnisse baut der eigenständige EFRE Antrag Smarter Leichtbau 4.1 auf, der einen signfikanten neuen Schritt in der Arbeit und der Kooperation darstellt.
Dieses Projekt wird aus Mitteln des EFRE Europäischen Fonds für regionale Entwicklung kofinanziert.
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
- W3C Wood Carinthian Competence Center (Lead Partner)
- Silicon Austria Labs GmbH
Laufzeit | Februar/2021 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
Currently available medical assistance products (orthoses, rehabilitation equipment, etc.) are often laborious to manufacture (Functional Need FN1), the fabrication results in a considerable amount of waste (Social Need SN1), e.g. through casting molds, and so leads to expensive products (SN2). At the same time, products are optically not appealing (SN3), heavy (FN2) and lack individualization and functionalization. Similar to clothes with ready-made sizes, they often do not fit the respective user (FN3). Fit and function are not monitored (FN4), which can cause pain, infections and other injuries. This is where 3D-printing can offer a sustainable. 3D-printing is an essential technology to make today's manufacturing more resource-efficient, sustainable and flexible. However, 3D printing has not yet been able to exploit its potential for medical devices due to the following technological needs:
- (TN1) Material can only be stacked in layers.
- (TN2) Material combinations have not yet been investigated thoroughly.
- (TN3) Support structures are complex and cannot be released easily.
- (TN4) Functional components are not considered in the design and manufacturing process.
iLEAD starts here and examines the following areas (Goals):
- (G1) Multimaterial 3D-printing: material structure, compatibility analyses and print head design (addresses (FN1, SN1, TN2,3)).
- (G2) Lightweight lattice and simulation-based optimization (addresses (SN1,3, FN2, TN3)).
- (G3) 3D-printing strategies for 5-axis printing (addresses (FN2, TN1,3)).
- (G4) Intelligent functionalization of products (addresses (FN4, TN4)).
- (G5) Holistic participatory development process including users (addresses SN3, FN3,4).
By 3D-printing of endless fibre composites, load-bearing and adaptive structures can be integrated into medical assistance products (e.g. shafts for legs). Combination of different materials enables to adjust the stiffness of lightweight lattices and to integrate sensors at relevant points during production (e.g. individualized splints with monitoring of training state) for the first time. The developed technology enables products to be individualized, exhibit high mechanical strength, while at the same time being cost-efficient, material- and weight-saving. iLEAD aims to produce medical assistance products WITH AND FOR the users by continuous user-centered-design, involving future users and experts in the field of therapy. Thus, iLEAD leads to an international leadership and pioneering position in 3D-printing technology with focus on medical assistance products.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | März/2022 - April/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Sensorik |
Studiengang | |
Forschungsprogramm | FFG - BRIDGE 1 |
Förderinstitution/Auftraggeber |
Aktuelle Systeme zur Prothesenversorgung bestehen aus einem Silikonliner, der direkt am Stumpf anliegt, und einem äußeren Schaft, der einwirkende Kräfte aufnehmen und ableiten soll. Da sich die Physiologie der Nutzer*innen oft schon über den Tagesverlauf ändert, entstehen Schmerzen und verminderter Tragekomfort durch Kräfte, die auf den Stumpf einwirken. Auch für die Anpassung des Schaftes ist es notwendig für die Orthopädietechniker*innen, diese Krafteinwirkung abzuschätzen und entsprechend zu verteilen. Aktuell gibt es kein bestehendes System zur Messung und durchgehenden Überwachung dieser Kräfte. In AMASE entwickeln wir Konzepte und Methoden im Bereich additive gefertigte kapazitive Sensorik und Simulation zur Messung und echtzeitfähigen Visualisierung der Kraftverteilung in Prothesenschäften.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Silicon Austria Labs GmbH
- Saphenus Medical Technology GmbH
Laufzeit | Jänner/2022 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Produktion der Zukunft |
Förderinstitution/Auftraggeber |
Nanogoes3D vereint verschiedene Disziplinen für die Entwicklung von 3D-gedruckten Sohlen für individualisierte Schuhe im Sportbereich. Die Kombination aus Nanomaterialien und 3D-Druck-Technologie ermöglicht die Herstellung einer flexiblen, leichten und kostengünstigen intelligenten Schuheinlegesohle mit antibakteriellen Eigenschaften.
Die Forschung gliedert sich in drei Bereiche:
a) Entwicklung geeigneter Nanomaterialien für sensorische und antibakterielle Eigenschaften;
b) Design und Entwicklung von 3D-Einlegesohlen mit hervorragenden physikalischen und mechanischen Eigenschaften;
c) Entwicklung eines 3D-gedruckten intelligenten Einlegesohlen-Demonstrators durch Etablierung des optimalen Benutzerschnittstellenkonzepts auf der Grundlage von FEM-Simulationen.
- FFG (Fördergeber/Auftraggeber)
- Wood K plus - Kompetenzzentrum Holz GmbH (Lead Partner)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
- Maierhofer GmbH
- Kästle GmbH
Laufzeit | Jänner/2020 - März/2022 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Automatisierungstechnik |
Studiengänge | |
Forschungsprogramm | INTERREG VA SI-AT |
Förderinstitution/Auftraggeber |
Das übergeordnete Projektziel war die Stärkung von grenzübergreifendem Wettbewerb, Forschung und Innovationdurch die Einrichtung einer gemeinsamen AM-Technologieplattform. Im ProjektASAM wurde die Kooperation der beiden Hochtechnologiestandorte Region Ljubljana und Technologiepark Villach im Schwerpunktbereich „Additive Manufacturing AM“ auf ein professionelles Niveau angehoben und es wurde eine gemeinsamegrenzübergreifende AM-Plattform etabliert. Mittelfristige Zielsetzung war es, die Makroregion (Slowenien, Österreich, Norditalien, Kroatien) zu einer europäischen Leaderregion für AM-Technologien zu entwickeln.
Kofinanziert durch den Europäischen Fonds für regionale Entwicklung
The overarching project objective was to strengthen cross-border competition, research and innovation by establishing a joint AM technology platform. In the ASAM project, cooperation between the two high-techlocations Ljubljana Region and Villach Technology Park in the key area of`Additive Manufacturing AM´ was raised to a professional level and a joint cross-border AM platform was established. The medium-term objective was to develop the macro-region (Slovenia, Austria, northern Italy, Croatia) into a European regional leader for AM technologies.
Co-financed by the European Regional Development Fond
Laufzeit | Februar/2021 - Dezember/2022 |
Homepage | Nähere Informationen finden Sie auf www.efre.gv.at |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Fertigungstechnik |
Studiengänge | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-REACT |
Förderinstitution/Auftraggeber |
Die drei Partner arbeiten im Projekt EFRE Smarter Leichtbau 4.0 seit dem Jahr 2018 erfolgreich zusammen. Die Schwerpunkte dieses Projekts waren bzw. sind:
• Leichtbau mit Faserverbundwerkstoffen zur Effizienzsteigerung und besseren Nachhaltigkeit für unterschiedlichste Anwendungen
• Weiterentwicklung der Faserwerkstoffe insbesonders in Richtung nachwachsende Rohstoffe
• Integration von Sensorik für smarte Funktionalität bzw. zur effizienten Prozesssteuerung
• Zerstörungsfreie Werkstoffprüfung und Prozessanalytik-Technologie
Parallel dazu wurden die Forscher dieser Technologien im Rahmen des Trainingsprogramms „Scientrepreneur – Basiswissen für Gründer*innen“ hinsichtlich unternehmerischer Verwertung sensibilisiert und ihnen Grundkompetenzen unternehmerischen Denkens und Handelns vermittelt. Das Trainingsprogramm wurde für Forscher*innen der beteiligten Instiutionen zweimal abgehalten.
Darüber hinaus wurde ein „ideales“ gesamtheitliches Konzept zur Implementierung von Unternehmertum an Hochschulen und Forschungseinrichtungen entwickelt. Dieses Konzept beinhaltet nicht nur einen Spin-off-Prozess auf der operativen Ebene, sondern auch Aufgaben, Prozesse und Methoden auf der normativen und strategischen Ebene einer Organisation.
Gemeinsame Projekteinreichungen mit Unternehmen der Region, die auf den Ergebnissen aufbauen (beispielsweise Prosthetics 4.0), wissenschaftliche Publikationen bis hin zur Vorstellung des Projekts im Rahmen der Veranstaltung Europa in meiner Region als eines von 3 Kärntner Projekten belegen die erfolgreiche Zusammarbeit der Partner und es konnte ein signifikanter Mehrwert durch die Kooperation erreicht werden.
Ende des Jahres 2019 hat die Europäische Kommission den europäischen Grünen Deal vorgestellt, um Maßnahmen zu setzen um die Bedrohung von Klimawandel und Umweltzerstörung abzuwenden und der gleichzeitig eine Wachstumsstrategie für den Übergang zu einer modernen, ressourceneffizienten Wirtschaft darstellt.
Die aktuelle Krise zufolge COVID 19 führt zusätzlich zu einem Umdenken im Hinblick auf Lieferketten und Versorgung weit über Lebensmittel hinaus.
Beide Aspekte sprechen für Smarten Leichtbau insbesonders mit nachwachsenden Rohstoffen.
Leichtbau in allen Anwendungen ist ein notwendiger Aspekt um Ressourcen zu sparen. Neben den primären Ressourcen in der Herstellung ermöglicht er vor allem bei Konstruktionen die in irgendeiner Form bewegt werden, Einsparungen im Betrieb durch geringeres Gewicht. Der Einsatz von nachwachsenden Rohstoffen, insbesonders als Verstärkungsfaser ermöglicht den Einsatz regionaler Rohstoffe, und regionaler Fertigung. Der Einsatz von Sensorik ermöglicht eine Schnittstelle zur digitalen Welt und trägt darüber hinaus zur weiteren Ressourceneinsparung bei, da Materialien optimal ausgenutzt werden können.
Auf diese Eckpunkte und die bereits erreichten Ergebnisse baut der eigenständige EFRE Antrag Smarter Leichtbau 4.1 auf, der einen signfikanten neuen Schritt in der Arbeit und der Kooperation darstellt.
Dieses Projekt wird aus Mitteln des EFRE Europäischen Fonds für regionale Entwicklung kofinanziert.
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
- W3C Wood Carinthian Competence Center (Lead Partner)
- Silicon Austria Labs GmbH
Laufzeit | Februar/2021 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
Currently available medical assistance products (orthoses, rehabilitation equipment, etc.) are often laborious to manufacture (Functional Need FN1), the fabrication results in a considerable amount of waste (Social Need SN1), e.g. through casting molds, and so leads to expensive products (SN2). At the same time, products are optically not appealing (SN3), heavy (FN2) and lack individualization and functionalization. Similar to clothes with ready-made sizes, they often do not fit the respective user (FN3). Fit and function are not monitored (FN4), which can cause pain, infections and other injuries. This is where 3D-printing can offer a sustainable. 3D-printing is an essential technology to make today's manufacturing more resource-efficient, sustainable and flexible. However, 3D printing has not yet been able to exploit its potential for medical devices due to the following technological needs:
- (TN1) Material can only be stacked in layers.
- (TN2) Material combinations have not yet been investigated thoroughly.
- (TN3) Support structures are complex and cannot be released easily.
- (TN4) Functional components are not considered in the design and manufacturing process.
iLEAD starts here and examines the following areas (Goals):
- (G1) Multimaterial 3D-printing: material structure, compatibility analyses and print head design (addresses (FN1, SN1, TN2,3)).
- (G2) Lightweight lattice and simulation-based optimization (addresses (SN1,3, FN2, TN3)).
- (G3) 3D-printing strategies for 5-axis printing (addresses (FN2, TN1,3)).
- (G4) Intelligent functionalization of products (addresses (FN4, TN4)).
- (G5) Holistic participatory development process including users (addresses SN3, FN3,4).
By 3D-printing of endless fibre composites, load-bearing and adaptive structures can be integrated into medical assistance products (e.g. shafts for legs). Combination of different materials enables to adjust the stiffness of lightweight lattices and to integrate sensors at relevant points during production (e.g. individualized splints with monitoring of training state) for the first time. The developed technology enables products to be individualized, exhibit high mechanical strength, while at the same time being cost-efficient, material- and weight-saving. iLEAD aims to produce medical assistance products WITH AND FOR the users by continuous user-centered-design, involving future users and experts in the field of therapy. Thus, iLEAD leads to an international leadership and pioneering position in 3D-printing technology with focus on medical assistance products.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)