Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
Umformen und Fügen | ILV | 2,0 | 2,0 | B2.00000.20.070 |
Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
Umformen und Fügen | ILV | 2,0 | 2,0 | B2.00000.20.070 |
Umformen und Fügen | ILV | 2,0 | 2,0 | B2.00000.20.070 |
Vertiefung: Industrietechnik | Typ | SWS | ECTS-Credits | |
---|---|---|---|---|
Umformen und Fügen | ILV | 2,0 | 2,0 | B2.00000.20.070 |
Vertiefung: Industrietechnik | Typ | SWS | ECTS-Credits | |
---|---|---|---|---|
Umformen und Fügen | ILV | 2,0 | 2,0 | B2.00000.20.070 |
Umformen und Fügen | ILV | 2,0 | 2,0 | B2.00000.20.070 |
Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
Werkstoff- und Bauteilprüfung Gruppe 1 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 2 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 3 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 4 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
Projekt Maschinenbau | PT | 3,0 | 5,0 | B2.06060.50.010 |
Projekt Maschinenbau | PT | 3,0 | 5,0 | B2.06060.50.010 |
Werkstoff- und Bauteilprüfung Gruppe 1 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 2 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 3 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 4 | LB | 1,5 | 2,0 | B2.00000.30.080 |
Lehrveranstaltung | Typ | SWS | ECTS-Credits | LV-Nummer |
---|---|---|---|---|
3D-Drucktechnologien: Materialien und Konstruktion | ILV | 1,5 | 2,0 | MBLB-3.06 |
Vertiefung: Industrietechnik | Typ | SWS | ECTS-Credits | |
---|---|---|---|---|
Werkstoff- und Bauteilprüfung Gruppe 1 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 2 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 3 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 4 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Vertiefung: Industrietechnik | Typ | SWS | ECTS-Credits | |
---|---|---|---|---|
Werkstoff- und Bauteilprüfung Gruppe 1 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 2 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 3 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Werkstoff- und Bauteilprüfung Gruppe 4 | LAB | 1,5 | 2,0 | B2.00000.30.080 |
Titel | Autor | Jahr |
---|
Titel | Autor | Jahr |
---|
Laufzeit | März/2025 - Oktober/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Die Trastic GmbH produziert Tischplatten und Möbelfronten aus recyceltem Kunststoff und bezieht komplexere 3D-Teile wie Tischgestelle und Stühle zu. Diese externen Teile verursachen hohe Transportkosten und lange Lieferzeiten. Durch Eigenproduktion von Halbfertigteilen mittels 3D-Druck könnte Trastic Abhängigkeiten reduzieren, Lieferketten verkürzen und flexibler bei kleinen Aufträgen werden.
Im Projekt Flake-and-Print wurde HDPE (High-Density Polyethylen) als ideales Material für den 3D-Druck identifiziert, was zu einer deutlichen Reduktion des CO₂-Ausstoßes führt. Ein Lebenszyklusvergleich zeigt, dass 3D-gedruckte HDPE-Tischgestelle weniger Emissionen und Energieverbrauch verursachen als Stahlgestelle.
Mechanische Tests belegen, dass 3D-gedrucktes HDPE in Steifigkeit und Festigkeit mit gepresstem HDPE vergleichbar ist, jedoch geringere Bruchdehnung aufweist. Das schwarze HDPE zeigte die besten Ergebnisse bei Bewitterungstests. Durch Prozessoptimierungen wurde eine hohe Bauteilqualität erreicht, und verschiedene Druckbettmaterialien verbesserten die Haftung.
Zur Fertigung der Tischgestelle wurden funktionale Muster entwickelt, die sich für Nachbearbeitungsmethoden wie Fräsen und Bohren eigneten. Fügetechniken wie Schraubverbindungen und Schweißverbindungen ermöglichten stabile, recyclingfähige Verbindungen. Das Projekt beweist, dass eine ressourceneffiziente Produktion sowohl ökologischen als auch ästhetischen Ansprüchen gerecht wird.
- Trastic GmbH (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Februar/2025 - März/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstofftechnik |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das Ziel des MICRO-ALPS besteht darin, lokale Gemeinden und Unternehmen für eines der aufkommenden Probleme des 21. Jahrhunderts zu sensibilisieren, nämlich Mikroplastik, mit besonderem Augenmerk auf die alpinen Gebiete, wo dieser Schadstoff noch wenig erforscht ist. Mikroplastik entsteht beim Abbau oder bei der Verarbeitung von Kunststoffen und kann nach der UNEP-Klassifizierung sehr unterschiedliche Größen haben. Dies ist möglich, wenn man einen Teil der Brillenindustrie als Bezugspunkt und Beispiel nimmt, nämlich die Werkstätten zum Schneiden und Schleifen von Brillengläsern, die bei der Verarbeitung von Brillengläsern große Mengen an Mikroplastik produzieren. Im Rahmen des Projekts werden die Partner untersuchen, welche Lösungen für die Rückgewinnung von Mikroplastik in Frage kommen, und ihre Recyclingfähigkeit für die Herstellung neuer und innovativer 3D-gedruckter Objekte aus Optikgeschäften und Glasschleifereien testen. Alle experimentellen Arbeiten und die gesammelten Informationen über die Art und die Produktion von Mikroplastik werden für den Wissenstransfer an die Personen im Programmgebiet genutzt, um die Produktion von Mikroplastik und dessen Freisetzung in die Umwelt zu vermeiden.
- Interreg IT-AT (Fördergeber/Auftraggeber)
- Certottica S.c.r.l. (Lead Partner)
- Università Cà Foscari Venezia
- Ökoinstitut Südtirol Alto Adige
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
Laufzeit | April/2025 - März/2029 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Funktionsmaterialien |
Studiengang | |
Forschungsprogramm | FFG - FH-Forschung für die Wirtschaft 2024 |
Förderinstitution/Auftraggeber |
Im Rahmen des ESMA-Projekts wird eine Technologieplattform für die Integration von Sensoren in Produkte entwickelt. Die verwendete Methode ist das 3D-Drucken, auch als additive Fertigung bezeichnet. Das Material wird dabei Schicht für Schicht innerhalb eines 3D-Druckers aufgetragen, bis die gewünschte Struktur entsteht. Der Prozess ist bereits sehr ausgereift und wird für das Prototyping sowie zunehmend auch für die Serienfertigung in Kleinserien, und in Einzelfällen bereits für die Großserienproduktion verwendet. Die Entwicklung smarter Bauteile, in denen Sensorik eingebaut ist, steckt jedoch noch in den Kinderschuhen.
Im Rahmen der Projektvorbereitung wurden zahlreiche Gespräche mit verschiedenen Stakeholdern geführt, darunter mit der Industrie, wissenschaftlichen Partnern, Kliniken sowie dem Kärntner Wirtschaftsförderungsfonds KWF. Es wurde uns mitgeteilt, dass die Entwicklung sensorisierter Bauteile eine Herausforderung darstellt, die es jedoch zu überwinden lohnt. Dahinter verbergen sich beträchtliche wirtschaftliche Chancen, jedoch ist auch der soziale und ökologische Einfluss des ESMA-Projekts von hoher Relevanz.
Die Realisierung des Projekts ist mit einer Reihe von technologischen Herausforderungen verbunden. Zunächst muss sichergestellt werden, dass die integrierte Sensorik einwandfrei funktioniert und dass die übrigen Bauteileigenschaften, beispielsweise mechanische Eigenschaften, dadurch nicht beeinträchtigt werden. Zweitens muss gewährleistet sein, dass die Sensorik einen Datentransfer nach außen ermöglicht. Drittens muss sichergestellt werden, dass die Sensorik an jeder Stelle und mit beliebiger Raumrichtung eingearbeitet werden kann, also auch in schrägen oder verdrehten Positionen. Da das klassische 3D-Druckverfahren dazu nicht in der Lage ist, schlagen wir das multi-axiale 3D-Druckverfahren als Lösung vor.
Neben der Technologieentwicklung ist es uns wichtig, einen schnellen Marktzugang zu erreichen. Dazu ist es erforderlich, den zukünftigen Anwender*innen, d. h. Ingenieur*innen und Designer*innen, ein Werkzeug an die Hand zu geben, um die neue ESMA-Technologie in ihrer täglichen Praxis nutzen zu können. Zur Lösung komplexer Designaufgaben erweitern wir das bekannte TRIZ-Verfahren erweitert, um die Möglichkeit, Sensorik effektiv zu integrieren.
Die Demonstration der Vorteile der Technologie ist von entscheidender Bedeutung für die post-project Technologiediffusion. Aus diesem Grund wurden Impact-Cases entwickelt, welche das Potential der ESMA-Technologie zur Verbesserung der Lebensqualität vulnerabler Gruppen und für Frauen zu demonstrieren. Zudem wird demonstriert, wie ESMA-Technologien genutzt werden können, um eine grünere Produktion zu fördern.
Das Projektdesign ist so konzipiert, dass Folgeprojekte eine sinnvolle Ergänzung darstellen. Im Rahmen des ESMA-Projekts erfolgt die Entwicklung der Technologieplattform. In den Folgeprojekten sollen Use Cases für verschiedene Anwendungen gemeinsam mit der Industrie entwickelt werden.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Juni/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - FEMtech |
Förderinstitution/Auftraggeber |
Ziel des Projektes PROTEA ist es, durch die Zusammenarbeit von Industrie, Forschung und Genderexpert*innen die Vorteile des 3D-Drucks für Prothesen unter Berücksichtigung gender- und diversitätsbezogener Aspekte zu erarbeiten und zur Umsetzung zu bringen.
Es wird Innovation im Gesamtfertigungsprozess von medizintechnischen Assistenzprodukten (MAP) durch Ergebnisse in mehreren Bereichen erzielt:
1. Durch einen partizipativen Technikgestaltungsansatz werden die Bedürfnisse und Praktiken der Nutzergruppen (Prothesenträger*innen, Ärzt*innen, Therapeut*innen etc.) gleich von Beginn an berücksichtigt und in zukünftige Produktionsschritte inkludiert.
2. Durch die Arbeit mit Unternehmen im Bereich 3D-Druck werden diese bezüglich Gender und Diversität sensibilisiert, wodurch sie die verschiedenen Anforderungen diverser Nutzergruppen im Bereich Medizintechnik besser verstehen und bedienen können.
3. Durch die Arbeit mit der relevanten Industrie (Orthopädietechniker*innen) wird das Vertrauen in diese neue Fertigungstechnologie gestärkt.
4. Durch technologische Innovation im Bereich von Material, Materialkombinationen und Topologieoptimierung werden die Passgenauigkeit, der Tragekomfort und dadurch die Akzeptanz der 3D-gedruckten Prothese erhöht, die integrierte Sensorik unterstützt die Anpassung zusätzlich.
Dadurch ergibt sich nicht nur für Prothesenträger*innen ein Vorteil im Bereich des Tragekomforts, sondern auch für Orthopädietechniker*innen ein Wettbewerbsvorteil durch ein vergleichsweise kostengünstiges und funktionales Produkt, bei dem durch das kontinuierliche Monitoring in den Alltagssituationen auftretende Problemfelder rascher und zielgenauer erkannt und behoben werden können. Die teilnehmenden Projektpartner sind neben der FH Kärnten (Forschungsgruppe AAL und Forschungszentrum ADMiRE) das Interdisziplinäre Forschungszentrum für Technik, Arbeit und Kultur, Luxinergy GmbH und Sepin Orthopädietechnik. Das Projekt wird aus den Mitteln der FFG gefördert.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Interdisziplinäres Forschungszentrum für Technik, Arbeit und Kultur (IFZ)
- Luxinergy GmbH
- Sepin Orthopädietechnik Sanitätshaus GmbH
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2025 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Verbundwerkstoffe |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das übergeordnete Ziel des BeSoGreat-Projekts ist die Schaffung eines regionalen Mehrwerts durch innovative Lösungen in der Bioökonomie und damit die Stärkung der Rolle von Akteuren des Produktionssektors in Forschung und Entwicklung beim Übergang zu einer Kreislaufwirtschaft auf grenzüberschreitender Ebene.
BeSoGreat zielt auf die Inwertsetzung von Nebenprodukten wie Biertreber und die grüne Wirtschaft als Chance für:
-Die Förderung der Entwicklung und Innovation regionaler Wertschöpfungsketten;
-Die Schaffung eines regionalen Mehrwerts durch Sensibilisierung für die Kreislaufwirtschaft;
-Die Integration von Sektoren der regionalen Kreislaufwirtschaft und Bioökonomie durch die Zusammenarbeit zwischen der Landwirtschaft, mit diversifizierten Aktivitäten wie Handwerksbrauereien und der Herstellung von langlebigen Gegenständen aus Biokunststoffen;
-Die Unterstützung regionaler Kreislaufwirtschafts- und Bioökonomieansätze für die grenzüberschreitende Zusammenarbeit unter Einbeziehung von Akteuren aus dem Agrar- und Produktionssektor auf der Grundlage der Valorisierung von Biertreber zur Herstellung von Bioverbundwerstoffen;
-Die Förderung der Entwicklung innovativer Beschäftigungsmöglichkeiten im Bereich der Kreislaufwirtschaft und der Bioökonomie;
-Die Förderung des grenzüberschreitenden Austauschs zwischen Wirtschaftsakteuren durch den Austausch bewährter Praktiken und die Durchführung von Pilotaktionen zur Innovation der Produktionsprozesse durch die Einführung fortschrittlicher Technologien wie dem 3D-Druck;
-Die Förderung der grenzüberschreitenden Forschung, Entwicklung und Innovation im Bereich der Kreislaufwirtschaft und der Bioökonomie durch die Zusammenarbeit zwischen Unternehmen und Forschungs- und Bildungseinrichtungen.
- Autonome Provinz Bozen – Südtirol (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- FH Kufstein Tirol Bildung GmbH
- Crossing Srl
- Nuova Deroma S.r.l
- COMET scrl
Laufzeit | Juli/2023 - Juli/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Kunststofftechnik |
Studiengang | |
Forschungsprogramm | FFG - Basisprogramm Ausschreibung 2023 |
Förderinstitution/Auftraggeber |
Durch das Recycling von Kunststoffabfällen können große Mengen an klimarelevanten Treibhausgasen vermieden werden. Aus dieser Motivation heraus hat sich die Trastic GmbH das Upcycling von Kunststoffabfällen zu individuellen und hochwertigen Möbeln zum Ziel gesetzt. Zu diesem Zweck hat sie ein Verfahren zur Herstellung von Möbelplatten aus recyceltem Kunststoff entwickelt. Allerdings lassen sich mit dem entwickelten Verfahren nur relativ einfache Geometrien herstellen. Ziel dieses Projekts ist es daher, einen Prozess zu entwickeln, mit dem sich farblich und mechanisch integrierbare Teile mit komplexeren Geometrien zur Aufwertung der gepressten Möbelstücke herstellen lassen. Dieser Prozess sollte in der Lage sein, die gleichen Rohstoffe wie das bisher entwickelte Pressverfahren zu verarbeiten, ebenso wie die dabei anfallenden Abfälle und Verschnitte. In diesem Zusammenhang ist die additive Fertigung auf Basis der Materialextrusion besonders interessant. Konkret sollen die Materialien in Form von Pellets verarbeitet werden, damit durch den Wegfall der Filamentherstellung massiv Energie gespart und die notwendige Verarbeitungsgeschwindigkeit erreicht wird.
- FFG (Fördergeber/Auftraggeber)
- Trastic GmbH (Lead Partner)
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Juli/2022 - Dezember/2023 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - FEMtech |
Förderinstitution/Auftraggeber |
Ziel des Projektes PROTEA ist es, durch die Zusammenarbeit von Industrie, Forschung und Genderexpert*innen die Vorteile des 3D-Drucks für Prothesen unter Berücksichtigung gender- und diversitätsbezogener Aspekte zu erarbeiten und zur Umsetzung zu bringen.
Es wird Innovation im Gesamtfertigungsprozess von medizintechnischen Assistenzprodukten (MAP) durch Ergebnisse in mehreren Bereichen erzielt:
1. Durch einen partizipativen Technikgestaltungsansatz werden die Bedürfnisse und Praktiken der Nutzergruppen (Prothesenträger*innen, Ärzt*innen, Therapeut*innen etc.) gleich von Beginn an berücksichtigt und in zukünftige Produktionsschritte inkludiert.
2. Durch die Arbeit mit Unternehmen im Bereich 3D-Druck werden diese bezüglich Gender und Diversität sensibilisiert, wodurch sie die verschiedenen Anforderungen diverser Nutzergruppen im Bereich Medizintechnik besser verstehen und bedienen können.
3. Durch die Arbeit mit der relevanten Industrie (Orthopädietechniker*innen) wird das Vertrauen in diese neue Fertigungstechnologie gestärkt.
4. Durch technologische Innovation im Bereich von Material, Materialkombinationen und Topologieoptimierung werden die Passgenauigkeit, der Tragekomfort und dadurch die Akzeptanz der 3D-gedruckten Prothese erhöht, die integrierte Sensorik unterstützt die Anpassung zusätzlich.
Dadurch ergibt sich nicht nur für Prothesenträger*innen ein Vorteil im Bereich des Tragekomforts, sondern auch für Orthopädietechniker*innen ein Wettbewerbsvorteil durch ein vergleichsweise kostengünstiges und funktionales Produkt, bei dem durch das kontinuierliche Monitoring in den Alltagssituationen auftretende Problemfelder rascher und zielgenauer erkannt und behoben werden können. Die teilnehmenden Projektpartner sind neben der FH Kärnten (Forschungsgruppe AAL und Forschungszentrum ADMiRE) das Interdisziplinäre Forschungszentrum für Technik, Arbeit und Kultur, Luxinergy GmbH und Sepin Orthopädietechnik. Das Projekt wird aus den Mitteln der FFG gefördert.
- FFG (Fördergeber/Auftraggeber)
- Sepin Orthopädietechnik Sanitätshaus GmbH
- Luxinergy GmbH
- Interdisziplinäres Forschungszentrum für Technik, Arbeit und Kultur (IFZ)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Jänner/2022 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Produktion der Zukunft |
Förderinstitution/Auftraggeber |
Nanogoes3D vereint verschiedene Disziplinen für die Entwicklung von 3D-gedruckten Sohlen für individualisierte Schuhe im Sportbereich. Die Kombination aus Nanomaterialien und 3D-Druck-Technologie ermöglicht die Herstellung einer flexiblen, leichten und kostengünstigen intelligenten Schuheinlegesohle mit antibakteriellen Eigenschaften.
Die Forschung gliedert sich in drei Bereiche:
a) Entwicklung geeigneter Nanomaterialien für sensorische und antibakterielle Eigenschaften;
b) Design und Entwicklung von 3D-Einlegesohlen mit hervorragenden physikalischen und mechanischen Eigenschaften;
c) Entwicklung eines 3D-gedruckten intelligenten Einlegesohlen-Demonstrators durch Etablierung des optimalen Benutzerschnittstellenkonzepts auf der Grundlage von FEM-Simulationen.
- FFG (Fördergeber/Auftraggeber)
- Wood K plus - Kompetenzzentrum Holz GmbH (Lead Partner)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
- Maierhofer GmbH
- Kästle GmbH
Laufzeit | August/2022 - Februar/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Schadstoffemission |
Studiengang | |
Forschungsprogramm | nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Kärntens CO2-Umsatz wurde in einem Modell (oemof: open energy modelling framework) abgebildet. Anhand des Modells können in Zwischenschritten, beispielsweise in 3- oder 5-Jahres-Perioden, Zielsetzungen sowie Transformationspfade und deren Auswirkungen auf dem Weg zur Klimaneutralität simuliert werden. Im Modell sind die täglich und jahreszeitlich bedingten Erzeugungs- und Bedarfsschwankungen, wie sie u.a. beim Strom- und Heizenergiebedarf auftreten, berücksichtigt. Das Modell liefert Szenarien für eine optimale Kopplung der verschiedenen Energiesektoren wie z. B. Strom, Gase und (Fern-)wärme, sowie den damit verbundenen Speicherbedarfen. Damit können Aussagen zur angestrebten CO2 Neutralität nicht nur bilanziell, also über das Jahr gesehen, sondern stundenfein mit Gültigkeit zu jedem beliebigen Zeitpunkt im Jahresverlauf getroffen werden. Das Modell berücksichtigt einerseits Vorgaben wie das CO2-Budget Kärntens, allgemein anerkannte Bilanzgrenzen, aktuelle und zukünftige Emissionen, Energiebedarfe und die zur Verfügung stehenden Technologien mit deren Kosten, sowie andererseits die Auswirkungen von Restriktionen wie die vorhandenen Potentiale erneuerbarer Energien und gesellschaftlich/politische Vorgaben.
- Amt der Kärntner Landesregierung - Abteilung 8 (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Februar/2021 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
Currently available medical assistance products (orthoses, rehabilitation equipment, etc.) are often laborious to manufacture (Functional Need FN1), the fabrication results in a considerable amount of waste (Social Need SN1), e.g. through casting molds, and so leads to expensive products (SN2). At the same time, products are optically not appealing (SN3), heavy (FN2) and lack individualization and functionalization. Similar to clothes with ready-made sizes, they often do not fit the respective user (FN3). Fit and function are not monitored (FN4), which can cause pain, infections and other injuries. This is where 3D-printing can offer a sustainable. 3D-printing is an essential technology to make today's manufacturing more resource-efficient, sustainable and flexible. However, 3D printing has not yet been able to exploit its potential for medical devices due to the following technological needs:
- (TN1) Material can only be stacked in layers.
- (TN2) Material combinations have not yet been investigated thoroughly.
- (TN3) Support structures are complex and cannot be released easily.
- (TN4) Functional components are not considered in the design and manufacturing process.
iLEAD starts here and examines the following areas (Goals):
- (G1) Multimaterial 3D-printing: material structure, compatibility analyses and print head design (addresses (FN1, SN1, TN2,3)).
- (G2) Lightweight lattice and simulation-based optimization (addresses (SN1,3, FN2, TN3)).
- (G3) 3D-printing strategies for 5-axis printing (addresses (FN2, TN1,3)).
- (G4) Intelligent functionalization of products (addresses (FN4, TN4)).
- (G5) Holistic participatory development process including users (addresses SN3, FN3,4).
By 3D-printing of endless fibre composites, load-bearing and adaptive structures can be integrated into medical assistance products (e.g. shafts for legs). Combination of different materials enables to adjust the stiffness of lightweight lattices and to integrate sensors at relevant points during production (e.g. individualized splints with monitoring of training state) for the first time. The developed technology enables products to be individualized, exhibit high mechanical strength, while at the same time being cost-efficient, material- and weight-saving. iLEAD aims to produce medical assistance products WITH AND FOR the users by continuous user-centered-design, involving future users and experts in the field of therapy. Thus, iLEAD leads to an international leadership and pioneering position in 3D-printing technology with focus on medical assistance products.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Februar/2021 - Dezember/2022 |
Homepage | Nähere Informationen finden Sie auf www.efre.gv.at |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Fertigungstechnik |
Studiengänge | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-REACT |
Förderinstitution/Auftraggeber |
Die drei Partner arbeiten im Projekt EFRE Smarter Leichtbau 4.0 seit dem Jahr 2018 erfolgreich zusammen. Die Schwerpunkte dieses Projekts waren bzw. sind:
• Leichtbau mit Faserverbundwerkstoffen zur Effizienzsteigerung und besseren Nachhaltigkeit für unterschiedlichste Anwendungen
• Weiterentwicklung der Faserwerkstoffe insbesonders in Richtung nachwachsende Rohstoffe
• Integration von Sensorik für smarte Funktionalität bzw. zur effizienten Prozesssteuerung
• Zerstörungsfreie Werkstoffprüfung und Prozessanalytik-Technologie
Parallel dazu wurden die Forscher dieser Technologien im Rahmen des Trainingsprogramms „Scientrepreneur – Basiswissen für Gründer*innen“ hinsichtlich unternehmerischer Verwertung sensibilisiert und ihnen Grundkompetenzen unternehmerischen Denkens und Handelns vermittelt. Das Trainingsprogramm wurde für Forscher*innen der beteiligten Instiutionen zweimal abgehalten.
Darüber hinaus wurde ein „ideales“ gesamtheitliches Konzept zur Implementierung von Unternehmertum an Hochschulen und Forschungseinrichtungen entwickelt. Dieses Konzept beinhaltet nicht nur einen Spin-off-Prozess auf der operativen Ebene, sondern auch Aufgaben, Prozesse und Methoden auf der normativen und strategischen Ebene einer Organisation.
Gemeinsame Projekteinreichungen mit Unternehmen der Region, die auf den Ergebnissen aufbauen (beispielsweise Prosthetics 4.0), wissenschaftliche Publikationen bis hin zur Vorstellung des Projekts im Rahmen der Veranstaltung Europa in meiner Region als eines von 3 Kärntner Projekten belegen die erfolgreiche Zusammarbeit der Partner und es konnte ein signifikanter Mehrwert durch die Kooperation erreicht werden.
Ende des Jahres 2019 hat die Europäische Kommission den europäischen Grünen Deal vorgestellt, um Maßnahmen zu setzen um die Bedrohung von Klimawandel und Umweltzerstörung abzuwenden und der gleichzeitig eine Wachstumsstrategie für den Übergang zu einer modernen, ressourceneffizienten Wirtschaft darstellt.
Die aktuelle Krise zufolge COVID 19 führt zusätzlich zu einem Umdenken im Hinblick auf Lieferketten und Versorgung weit über Lebensmittel hinaus.
Beide Aspekte sprechen für Smarten Leichtbau insbesonders mit nachwachsenden Rohstoffen.
Leichtbau in allen Anwendungen ist ein notwendiger Aspekt um Ressourcen zu sparen. Neben den primären Ressourcen in der Herstellung ermöglicht er vor allem bei Konstruktionen die in irgendeiner Form bewegt werden, Einsparungen im Betrieb durch geringeres Gewicht. Der Einsatz von nachwachsenden Rohstoffen, insbesonders als Verstärkungsfaser ermöglicht den Einsatz regionaler Rohstoffe, und regionaler Fertigung. Der Einsatz von Sensorik ermöglicht eine Schnittstelle zur digitalen Welt und trägt darüber hinaus zur weiteren Ressourceneinsparung bei, da Materialien optimal ausgenutzt werden können.
Auf diese Eckpunkte und die bereits erreichten Ergebnisse baut der eigenständige EFRE Antrag Smarter Leichtbau 4.1 auf, der einen signfikanten neuen Schritt in der Arbeit und der Kooperation darstellt.
Dieses Projekt wird aus Mitteln des EFRE Europäischen Fonds für regionale Entwicklung kofinanziert.
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
- W3C Wood Carinthian Competence Center (Lead Partner)
- Silicon Austria Labs GmbH
Laufzeit | Jänner/2020 - März/2022 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Automatisierungstechnik |
Studiengänge | |
Forschungsprogramm | INTERREG VA SI-AT |
Förderinstitution/Auftraggeber |
Das übergeordnete Projektziel war die Stärkung von grenzübergreifendem Wettbewerb, Forschung und Innovationdurch die Einrichtung einer gemeinsamen AM-Technologieplattform. Im ProjektASAM wurde die Kooperation der beiden Hochtechnologiestandorte Region Ljubljana und Technologiepark Villach im Schwerpunktbereich „Additive Manufacturing AM“ auf ein professionelles Niveau angehoben und es wurde eine gemeinsamegrenzübergreifende AM-Plattform etabliert. Mittelfristige Zielsetzung war es, die Makroregion (Slowenien, Österreich, Norditalien, Kroatien) zu einer europäischen Leaderregion für AM-Technologien zu entwickeln.
Kofinanziert durch den Europäischen Fonds für regionale Entwicklung
The overarching project objective was to strengthen cross-border competition, research and innovation by establishing a joint AM technology platform. In the ASAM project, cooperation between the two high-techlocations Ljubljana Region and Villach Technology Park in the key area of`Additive Manufacturing AM´ was raised to a professional level and a joint cross-border AM platform was established. The medium-term objective was to develop the macro-region (Slovenia, Austria, northern Italy, Croatia) into a European regional leader for AM technologies.
Co-financed by the European Regional Development Fond
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | April/2025 - März/2029 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Funktionsmaterialien |
Studiengang | |
Forschungsprogramm | FFG - FH-Forschung für die Wirtschaft 2024 |
Förderinstitution/Auftraggeber |
Im Rahmen des ESMA-Projekts wird eine Technologieplattform für die Integration von Sensoren in Produkte entwickelt. Die verwendete Methode ist das 3D-Drucken, auch als additive Fertigung bezeichnet. Das Material wird dabei Schicht für Schicht innerhalb eines 3D-Druckers aufgetragen, bis die gewünschte Struktur entsteht. Der Prozess ist bereits sehr ausgereift und wird für das Prototyping sowie zunehmend auch für die Serienfertigung in Kleinserien, und in Einzelfällen bereits für die Großserienproduktion verwendet. Die Entwicklung smarter Bauteile, in denen Sensorik eingebaut ist, steckt jedoch noch in den Kinderschuhen.
Im Rahmen der Projektvorbereitung wurden zahlreiche Gespräche mit verschiedenen Stakeholdern geführt, darunter mit der Industrie, wissenschaftlichen Partnern, Kliniken sowie dem Kärntner Wirtschaftsförderungsfonds KWF. Es wurde uns mitgeteilt, dass die Entwicklung sensorisierter Bauteile eine Herausforderung darstellt, die es jedoch zu überwinden lohnt. Dahinter verbergen sich beträchtliche wirtschaftliche Chancen, jedoch ist auch der soziale und ökologische Einfluss des ESMA-Projekts von hoher Relevanz.
Die Realisierung des Projekts ist mit einer Reihe von technologischen Herausforderungen verbunden. Zunächst muss sichergestellt werden, dass die integrierte Sensorik einwandfrei funktioniert und dass die übrigen Bauteileigenschaften, beispielsweise mechanische Eigenschaften, dadurch nicht beeinträchtigt werden. Zweitens muss gewährleistet sein, dass die Sensorik einen Datentransfer nach außen ermöglicht. Drittens muss sichergestellt werden, dass die Sensorik an jeder Stelle und mit beliebiger Raumrichtung eingearbeitet werden kann, also auch in schrägen oder verdrehten Positionen. Da das klassische 3D-Druckverfahren dazu nicht in der Lage ist, schlagen wir das multi-axiale 3D-Druckverfahren als Lösung vor.
Neben der Technologieentwicklung ist es uns wichtig, einen schnellen Marktzugang zu erreichen. Dazu ist es erforderlich, den zukünftigen Anwender*innen, d. h. Ingenieur*innen und Designer*innen, ein Werkzeug an die Hand zu geben, um die neue ESMA-Technologie in ihrer täglichen Praxis nutzen zu können. Zur Lösung komplexer Designaufgaben erweitern wir das bekannte TRIZ-Verfahren erweitert, um die Möglichkeit, Sensorik effektiv zu integrieren.
Die Demonstration der Vorteile der Technologie ist von entscheidender Bedeutung für die post-project Technologiediffusion. Aus diesem Grund wurden Impact-Cases entwickelt, welche das Potential der ESMA-Technologie zur Verbesserung der Lebensqualität vulnerabler Gruppen und für Frauen zu demonstrieren. Zudem wird demonstriert, wie ESMA-Technologien genutzt werden können, um eine grünere Produktion zu fördern.
Das Projektdesign ist so konzipiert, dass Folgeprojekte eine sinnvolle Ergänzung darstellen. Im Rahmen des ESMA-Projekts erfolgt die Entwicklung der Technologieplattform. In den Folgeprojekten sollen Use Cases für verschiedene Anwendungen gemeinsam mit der Industrie entwickelt werden.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | April/2025 - März/2029 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Funktionsmaterialien |
Studiengang | |
Forschungsprogramm | FFG - FH-Forschung für die Wirtschaft 2024 |
Förderinstitution/Auftraggeber |
Im Rahmen des ESMA-Projekts wird eine Technologieplattform für die Integration von Sensoren in Produkte entwickelt. Die verwendete Methode ist das 3D-Drucken, auch als additive Fertigung bezeichnet. Das Material wird dabei Schicht für Schicht innerhalb eines 3D-Druckers aufgetragen, bis die gewünschte Struktur entsteht. Der Prozess ist bereits sehr ausgereift und wird für das Prototyping sowie zunehmend auch für die Serienfertigung in Kleinserien, und in Einzelfällen bereits für die Großserienproduktion verwendet. Die Entwicklung smarter Bauteile, in denen Sensorik eingebaut ist, steckt jedoch noch in den Kinderschuhen.
Im Rahmen der Projektvorbereitung wurden zahlreiche Gespräche mit verschiedenen Stakeholdern geführt, darunter mit der Industrie, wissenschaftlichen Partnern, Kliniken sowie dem Kärntner Wirtschaftsförderungsfonds KWF. Es wurde uns mitgeteilt, dass die Entwicklung sensorisierter Bauteile eine Herausforderung darstellt, die es jedoch zu überwinden lohnt. Dahinter verbergen sich beträchtliche wirtschaftliche Chancen, jedoch ist auch der soziale und ökologische Einfluss des ESMA-Projekts von hoher Relevanz.
Die Realisierung des Projekts ist mit einer Reihe von technologischen Herausforderungen verbunden. Zunächst muss sichergestellt werden, dass die integrierte Sensorik einwandfrei funktioniert und dass die übrigen Bauteileigenschaften, beispielsweise mechanische Eigenschaften, dadurch nicht beeinträchtigt werden. Zweitens muss gewährleistet sein, dass die Sensorik einen Datentransfer nach außen ermöglicht. Drittens muss sichergestellt werden, dass die Sensorik an jeder Stelle und mit beliebiger Raumrichtung eingearbeitet werden kann, also auch in schrägen oder verdrehten Positionen. Da das klassische 3D-Druckverfahren dazu nicht in der Lage ist, schlagen wir das multi-axiale 3D-Druckverfahren als Lösung vor.
Neben der Technologieentwicklung ist es uns wichtig, einen schnellen Marktzugang zu erreichen. Dazu ist es erforderlich, den zukünftigen Anwender*innen, d. h. Ingenieur*innen und Designer*innen, ein Werkzeug an die Hand zu geben, um die neue ESMA-Technologie in ihrer täglichen Praxis nutzen zu können. Zur Lösung komplexer Designaufgaben erweitern wir das bekannte TRIZ-Verfahren erweitert, um die Möglichkeit, Sensorik effektiv zu integrieren.
Die Demonstration der Vorteile der Technologie ist von entscheidender Bedeutung für die post-project Technologiediffusion. Aus diesem Grund wurden Impact-Cases entwickelt, welche das Potential der ESMA-Technologie zur Verbesserung der Lebensqualität vulnerabler Gruppen und für Frauen zu demonstrieren. Zudem wird demonstriert, wie ESMA-Technologien genutzt werden können, um eine grünere Produktion zu fördern.
Das Projektdesign ist so konzipiert, dass Folgeprojekte eine sinnvolle Ergänzung darstellen. Im Rahmen des ESMA-Projekts erfolgt die Entwicklung der Technologieplattform. In den Folgeprojekten sollen Use Cases für verschiedene Anwendungen gemeinsam mit der Industrie entwickelt werden.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | April/2025 - März/2029 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Funktionsmaterialien |
Studiengang | |
Forschungsprogramm | FFG - FH-Forschung für die Wirtschaft 2024 |
Förderinstitution/Auftraggeber |
Im Rahmen des ESMA-Projekts wird eine Technologieplattform für die Integration von Sensoren in Produkte entwickelt. Die verwendete Methode ist das 3D-Drucken, auch als additive Fertigung bezeichnet. Das Material wird dabei Schicht für Schicht innerhalb eines 3D-Druckers aufgetragen, bis die gewünschte Struktur entsteht. Der Prozess ist bereits sehr ausgereift und wird für das Prototyping sowie zunehmend auch für die Serienfertigung in Kleinserien, und in Einzelfällen bereits für die Großserienproduktion verwendet. Die Entwicklung smarter Bauteile, in denen Sensorik eingebaut ist, steckt jedoch noch in den Kinderschuhen.
Im Rahmen der Projektvorbereitung wurden zahlreiche Gespräche mit verschiedenen Stakeholdern geführt, darunter mit der Industrie, wissenschaftlichen Partnern, Kliniken sowie dem Kärntner Wirtschaftsförderungsfonds KWF. Es wurde uns mitgeteilt, dass die Entwicklung sensorisierter Bauteile eine Herausforderung darstellt, die es jedoch zu überwinden lohnt. Dahinter verbergen sich beträchtliche wirtschaftliche Chancen, jedoch ist auch der soziale und ökologische Einfluss des ESMA-Projekts von hoher Relevanz.
Die Realisierung des Projekts ist mit einer Reihe von technologischen Herausforderungen verbunden. Zunächst muss sichergestellt werden, dass die integrierte Sensorik einwandfrei funktioniert und dass die übrigen Bauteileigenschaften, beispielsweise mechanische Eigenschaften, dadurch nicht beeinträchtigt werden. Zweitens muss gewährleistet sein, dass die Sensorik einen Datentransfer nach außen ermöglicht. Drittens muss sichergestellt werden, dass die Sensorik an jeder Stelle und mit beliebiger Raumrichtung eingearbeitet werden kann, also auch in schrägen oder verdrehten Positionen. Da das klassische 3D-Druckverfahren dazu nicht in der Lage ist, schlagen wir das multi-axiale 3D-Druckverfahren als Lösung vor.
Neben der Technologieentwicklung ist es uns wichtig, einen schnellen Marktzugang zu erreichen. Dazu ist es erforderlich, den zukünftigen Anwender*innen, d. h. Ingenieur*innen und Designer*innen, ein Werkzeug an die Hand zu geben, um die neue ESMA-Technologie in ihrer täglichen Praxis nutzen zu können. Zur Lösung komplexer Designaufgaben erweitern wir das bekannte TRIZ-Verfahren erweitert, um die Möglichkeit, Sensorik effektiv zu integrieren.
Die Demonstration der Vorteile der Technologie ist von entscheidender Bedeutung für die post-project Technologiediffusion. Aus diesem Grund wurden Impact-Cases entwickelt, welche das Potential der ESMA-Technologie zur Verbesserung der Lebensqualität vulnerabler Gruppen und für Frauen zu demonstrieren. Zudem wird demonstriert, wie ESMA-Technologien genutzt werden können, um eine grünere Produktion zu fördern.
Das Projektdesign ist so konzipiert, dass Folgeprojekte eine sinnvolle Ergänzung darstellen. Im Rahmen des ESMA-Projekts erfolgt die Entwicklung der Technologieplattform. In den Folgeprojekten sollen Use Cases für verschiedene Anwendungen gemeinsam mit der Industrie entwickelt werden.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Februar/2025 - März/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstofftechnik |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das Ziel des MICRO-ALPS besteht darin, lokale Gemeinden und Unternehmen für eines der aufkommenden Probleme des 21. Jahrhunderts zu sensibilisieren, nämlich Mikroplastik, mit besonderem Augenmerk auf die alpinen Gebiete, wo dieser Schadstoff noch wenig erforscht ist. Mikroplastik entsteht beim Abbau oder bei der Verarbeitung von Kunststoffen und kann nach der UNEP-Klassifizierung sehr unterschiedliche Größen haben. Dies ist möglich, wenn man einen Teil der Brillenindustrie als Bezugspunkt und Beispiel nimmt, nämlich die Werkstätten zum Schneiden und Schleifen von Brillengläsern, die bei der Verarbeitung von Brillengläsern große Mengen an Mikroplastik produzieren. Im Rahmen des Projekts werden die Partner untersuchen, welche Lösungen für die Rückgewinnung von Mikroplastik in Frage kommen, und ihre Recyclingfähigkeit für die Herstellung neuer und innovativer 3D-gedruckter Objekte aus Optikgeschäften und Glasschleifereien testen. Alle experimentellen Arbeiten und die gesammelten Informationen über die Art und die Produktion von Mikroplastik werden für den Wissenstransfer an die Personen im Programmgebiet genutzt, um die Produktion von Mikroplastik und dessen Freisetzung in die Umwelt zu vermeiden.
- Interreg IT-AT (Fördergeber/Auftraggeber)
- Certottica S.c.r.l. (Lead Partner)
- Università Cà Foscari Venezia
- Ökoinstitut Südtirol Alto Adige
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | April/2025 - März/2029 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Funktionsmaterialien |
Studiengang | |
Forschungsprogramm | FFG - FH-Forschung für die Wirtschaft 2024 |
Förderinstitution/Auftraggeber |
Im Rahmen des ESMA-Projekts wird eine Technologieplattform für die Integration von Sensoren in Produkte entwickelt. Die verwendete Methode ist das 3D-Drucken, auch als additive Fertigung bezeichnet. Das Material wird dabei Schicht für Schicht innerhalb eines 3D-Druckers aufgetragen, bis die gewünschte Struktur entsteht. Der Prozess ist bereits sehr ausgereift und wird für das Prototyping sowie zunehmend auch für die Serienfertigung in Kleinserien, und in Einzelfällen bereits für die Großserienproduktion verwendet. Die Entwicklung smarter Bauteile, in denen Sensorik eingebaut ist, steckt jedoch noch in den Kinderschuhen.
Im Rahmen der Projektvorbereitung wurden zahlreiche Gespräche mit verschiedenen Stakeholdern geführt, darunter mit der Industrie, wissenschaftlichen Partnern, Kliniken sowie dem Kärntner Wirtschaftsförderungsfonds KWF. Es wurde uns mitgeteilt, dass die Entwicklung sensorisierter Bauteile eine Herausforderung darstellt, die es jedoch zu überwinden lohnt. Dahinter verbergen sich beträchtliche wirtschaftliche Chancen, jedoch ist auch der soziale und ökologische Einfluss des ESMA-Projekts von hoher Relevanz.
Die Realisierung des Projekts ist mit einer Reihe von technologischen Herausforderungen verbunden. Zunächst muss sichergestellt werden, dass die integrierte Sensorik einwandfrei funktioniert und dass die übrigen Bauteileigenschaften, beispielsweise mechanische Eigenschaften, dadurch nicht beeinträchtigt werden. Zweitens muss gewährleistet sein, dass die Sensorik einen Datentransfer nach außen ermöglicht. Drittens muss sichergestellt werden, dass die Sensorik an jeder Stelle und mit beliebiger Raumrichtung eingearbeitet werden kann, also auch in schrägen oder verdrehten Positionen. Da das klassische 3D-Druckverfahren dazu nicht in der Lage ist, schlagen wir das multi-axiale 3D-Druckverfahren als Lösung vor.
Neben der Technologieentwicklung ist es uns wichtig, einen schnellen Marktzugang zu erreichen. Dazu ist es erforderlich, den zukünftigen Anwender*innen, d. h. Ingenieur*innen und Designer*innen, ein Werkzeug an die Hand zu geben, um die neue ESMA-Technologie in ihrer täglichen Praxis nutzen zu können. Zur Lösung komplexer Designaufgaben erweitern wir das bekannte TRIZ-Verfahren erweitert, um die Möglichkeit, Sensorik effektiv zu integrieren.
Die Demonstration der Vorteile der Technologie ist von entscheidender Bedeutung für die post-project Technologiediffusion. Aus diesem Grund wurden Impact-Cases entwickelt, welche das Potential der ESMA-Technologie zur Verbesserung der Lebensqualität vulnerabler Gruppen und für Frauen zu demonstrieren. Zudem wird demonstriert, wie ESMA-Technologien genutzt werden können, um eine grünere Produktion zu fördern.
Das Projektdesign ist so konzipiert, dass Folgeprojekte eine sinnvolle Ergänzung darstellen. Im Rahmen des ESMA-Projekts erfolgt die Entwicklung der Technologieplattform. In den Folgeprojekten sollen Use Cases für verschiedene Anwendungen gemeinsam mit der Industrie entwickelt werden.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Februar/2025 - März/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstofftechnik |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das Ziel des MICRO-ALPS besteht darin, lokale Gemeinden und Unternehmen für eines der aufkommenden Probleme des 21. Jahrhunderts zu sensibilisieren, nämlich Mikroplastik, mit besonderem Augenmerk auf die alpinen Gebiete, wo dieser Schadstoff noch wenig erforscht ist. Mikroplastik entsteht beim Abbau oder bei der Verarbeitung von Kunststoffen und kann nach der UNEP-Klassifizierung sehr unterschiedliche Größen haben. Dies ist möglich, wenn man einen Teil der Brillenindustrie als Bezugspunkt und Beispiel nimmt, nämlich die Werkstätten zum Schneiden und Schleifen von Brillengläsern, die bei der Verarbeitung von Brillengläsern große Mengen an Mikroplastik produzieren. Im Rahmen des Projekts werden die Partner untersuchen, welche Lösungen für die Rückgewinnung von Mikroplastik in Frage kommen, und ihre Recyclingfähigkeit für die Herstellung neuer und innovativer 3D-gedruckter Objekte aus Optikgeschäften und Glasschleifereien testen. Alle experimentellen Arbeiten und die gesammelten Informationen über die Art und die Produktion von Mikroplastik werden für den Wissenstransfer an die Personen im Programmgebiet genutzt, um die Produktion von Mikroplastik und dessen Freisetzung in die Umwelt zu vermeiden.
- Interreg IT-AT (Fördergeber/Auftraggeber)
- Certottica S.c.r.l. (Lead Partner)
- Università Cà Foscari Venezia
- Ökoinstitut Südtirol Alto Adige
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
Laufzeit | März/2025 - Oktober/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Die Trastic GmbH produziert Tischplatten und Möbelfronten aus recyceltem Kunststoff und bezieht komplexere 3D-Teile wie Tischgestelle und Stühle zu. Diese externen Teile verursachen hohe Transportkosten und lange Lieferzeiten. Durch Eigenproduktion von Halbfertigteilen mittels 3D-Druck könnte Trastic Abhängigkeiten reduzieren, Lieferketten verkürzen und flexibler bei kleinen Aufträgen werden.
Im Projekt Flake-and-Print wurde HDPE (High-Density Polyethylen) als ideales Material für den 3D-Druck identifiziert, was zu einer deutlichen Reduktion des CO₂-Ausstoßes führt. Ein Lebenszyklusvergleich zeigt, dass 3D-gedruckte HDPE-Tischgestelle weniger Emissionen und Energieverbrauch verursachen als Stahlgestelle.
Mechanische Tests belegen, dass 3D-gedrucktes HDPE in Steifigkeit und Festigkeit mit gepresstem HDPE vergleichbar ist, jedoch geringere Bruchdehnung aufweist. Das schwarze HDPE zeigte die besten Ergebnisse bei Bewitterungstests. Durch Prozessoptimierungen wurde eine hohe Bauteilqualität erreicht, und verschiedene Druckbettmaterialien verbesserten die Haftung.
Zur Fertigung der Tischgestelle wurden funktionale Muster entwickelt, die sich für Nachbearbeitungsmethoden wie Fräsen und Bohren eigneten. Fügetechniken wie Schraubverbindungen und Schweißverbindungen ermöglichten stabile, recyclingfähige Verbindungen. Das Projekt beweist, dass eine ressourceneffiziente Produktion sowohl ökologischen als auch ästhetischen Ansprüchen gerecht wird.
- Trastic GmbH (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Juli/2023 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Unternehmenssektor Inland |
Förderinstitution/Auftraggeber |
1. Dienstleistung für die Firma KP-TEC (2023):
(Durchziehversuch (1), Leitung R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2025 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Verbundwerkstoffe |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das übergeordnete Ziel des BeSoGreat-Projekts ist die Schaffung eines regionalen Mehrwerts durch innovative Lösungen in der Bioökonomie und damit die Stärkung der Rolle von Akteuren des Produktionssektors in Forschung und Entwicklung beim Übergang zu einer Kreislaufwirtschaft auf grenzüberschreitender Ebene.
BeSoGreat zielt auf die Inwertsetzung von Nebenprodukten wie Biertreber und die grüne Wirtschaft als Chance für:
-Die Förderung der Entwicklung und Innovation regionaler Wertschöpfungsketten;
-Die Schaffung eines regionalen Mehrwerts durch Sensibilisierung für die Kreislaufwirtschaft;
-Die Integration von Sektoren der regionalen Kreislaufwirtschaft und Bioökonomie durch die Zusammenarbeit zwischen der Landwirtschaft, mit diversifizierten Aktivitäten wie Handwerksbrauereien und der Herstellung von langlebigen Gegenständen aus Biokunststoffen;
-Die Unterstützung regionaler Kreislaufwirtschafts- und Bioökonomieansätze für die grenzüberschreitende Zusammenarbeit unter Einbeziehung von Akteuren aus dem Agrar- und Produktionssektor auf der Grundlage der Valorisierung von Biertreber zur Herstellung von Bioverbundwerstoffen;
-Die Förderung der Entwicklung innovativer Beschäftigungsmöglichkeiten im Bereich der Kreislaufwirtschaft und der Bioökonomie;
-Die Förderung des grenzüberschreitenden Austauschs zwischen Wirtschaftsakteuren durch den Austausch bewährter Praktiken und die Durchführung von Pilotaktionen zur Innovation der Produktionsprozesse durch die Einführung fortschrittlicher Technologien wie dem 3D-Druck;
-Die Förderung der grenzüberschreitenden Forschung, Entwicklung und Innovation im Bereich der Kreislaufwirtschaft und der Bioökonomie durch die Zusammenarbeit zwischen Unternehmen und Forschungs- und Bildungseinrichtungen.
- Autonome Provinz Bozen – Südtirol (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- FH Kufstein Tirol Bildung GmbH
- Crossing Srl
- Nuova Deroma S.r.l
- COMET scrl
Laufzeit | Jänner/2024 - März/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
In iLEAD wird eine neuartigen 3D Druck Technologie entwickelt um medizinische Assistenzprodukte (Prothesen und Orthesen) individuell angepasst, materialsparend, gewichtssparend und gleichzeitig mit hoher Festigkeit, kosteneffizient herzustellen. Die Entwicklung erfolgt unter Einbeziehung der zukünftigen Nutzer*innen und Expert*innen im Bereich der Therapie. Die Zielsetzung in iLEAD ist es eine internationale Leadership und Pioneering Position im Bereich 3D-Druck Technologie mit speziellem Fokus auf medizinische Assistenzprodukte zu erreichen. Technisch behandelt das Projekt die vollständige Wertschöpfungskette, angefangen bei der geeigneten Materialauswahl über das optimale Design bis hin zu innovativen Prozessen.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Dezember/2030 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstoffprüfung |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
2024:
1. Dienstleistung für die Firma KP-TEC:
(Maximalkraftversuch, Leitung: R. WERNER)
2. Dienstleistung für die Firma KP-TEC:
(Durchziehversuch (2), Leitung: R. WERNER)
- Diverse Auftraggeber (Fördergeber/Auftraggeber)
Laufzeit | Jänner/2024 - Juni/2025 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengang | |
Forschungsprogramm | FFG - FEMtech |
Förderinstitution/Auftraggeber |
Ziel des Projektes PROTEA ist es, durch die Zusammenarbeit von Industrie, Forschung und Genderexpert*innen die Vorteile des 3D-Drucks für Prothesen unter Berücksichtigung gender- und diversitätsbezogener Aspekte zu erarbeiten und zur Umsetzung zu bringen.
Es wird Innovation im Gesamtfertigungsprozess von medizintechnischen Assistenzprodukten (MAP) durch Ergebnisse in mehreren Bereichen erzielt:
1. Durch einen partizipativen Technikgestaltungsansatz werden die Bedürfnisse und Praktiken der Nutzergruppen (Prothesenträger*innen, Ärzt*innen, Therapeut*innen etc.) gleich von Beginn an berücksichtigt und in zukünftige Produktionsschritte inkludiert.
2. Durch die Arbeit mit Unternehmen im Bereich 3D-Druck werden diese bezüglich Gender und Diversität sensibilisiert, wodurch sie die verschiedenen Anforderungen diverser Nutzergruppen im Bereich Medizintechnik besser verstehen und bedienen können.
3. Durch die Arbeit mit der relevanten Industrie (Orthopädietechniker*innen) wird das Vertrauen in diese neue Fertigungstechnologie gestärkt.
4. Durch technologische Innovation im Bereich von Material, Materialkombinationen und Topologieoptimierung werden die Passgenauigkeit, der Tragekomfort und dadurch die Akzeptanz der 3D-gedruckten Prothese erhöht, die integrierte Sensorik unterstützt die Anpassung zusätzlich.
Dadurch ergibt sich nicht nur für Prothesenträger*innen ein Vorteil im Bereich des Tragekomforts, sondern auch für Orthopädietechniker*innen ein Wettbewerbsvorteil durch ein vergleichsweise kostengünstiges und funktionales Produkt, bei dem durch das kontinuierliche Monitoring in den Alltagssituationen auftretende Problemfelder rascher und zielgenauer erkannt und behoben werden können. Die teilnehmenden Projektpartner sind neben der FH Kärnten (Forschungsgruppe AAL und Forschungszentrum ADMiRE) das Interdisziplinäre Forschungszentrum für Technik, Arbeit und Kultur, Luxinergy GmbH und Sepin Orthopädietechnik. Das Projekt wird aus den Mitteln der FFG gefördert.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
- Interdisziplinäres Forschungszentrum für Technik, Arbeit und Kultur (IFZ)
- Luxinergy GmbH
- Sepin Orthopädietechnik Sanitätshaus GmbH
Laufzeit | April/2025 - März/2029 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Funktionsmaterialien |
Studiengang | |
Forschungsprogramm | FFG - FH-Forschung für die Wirtschaft 2024 |
Förderinstitution/Auftraggeber |
Im Rahmen des ESMA-Projekts wird eine Technologieplattform für die Integration von Sensoren in Produkte entwickelt. Die verwendete Methode ist das 3D-Drucken, auch als additive Fertigung bezeichnet. Das Material wird dabei Schicht für Schicht innerhalb eines 3D-Druckers aufgetragen, bis die gewünschte Struktur entsteht. Der Prozess ist bereits sehr ausgereift und wird für das Prototyping sowie zunehmend auch für die Serienfertigung in Kleinserien, und in Einzelfällen bereits für die Großserienproduktion verwendet. Die Entwicklung smarter Bauteile, in denen Sensorik eingebaut ist, steckt jedoch noch in den Kinderschuhen.
Im Rahmen der Projektvorbereitung wurden zahlreiche Gespräche mit verschiedenen Stakeholdern geführt, darunter mit der Industrie, wissenschaftlichen Partnern, Kliniken sowie dem Kärntner Wirtschaftsförderungsfonds KWF. Es wurde uns mitgeteilt, dass die Entwicklung sensorisierter Bauteile eine Herausforderung darstellt, die es jedoch zu überwinden lohnt. Dahinter verbergen sich beträchtliche wirtschaftliche Chancen, jedoch ist auch der soziale und ökologische Einfluss des ESMA-Projekts von hoher Relevanz.
Die Realisierung des Projekts ist mit einer Reihe von technologischen Herausforderungen verbunden. Zunächst muss sichergestellt werden, dass die integrierte Sensorik einwandfrei funktioniert und dass die übrigen Bauteileigenschaften, beispielsweise mechanische Eigenschaften, dadurch nicht beeinträchtigt werden. Zweitens muss gewährleistet sein, dass die Sensorik einen Datentransfer nach außen ermöglicht. Drittens muss sichergestellt werden, dass die Sensorik an jeder Stelle und mit beliebiger Raumrichtung eingearbeitet werden kann, also auch in schrägen oder verdrehten Positionen. Da das klassische 3D-Druckverfahren dazu nicht in der Lage ist, schlagen wir das multi-axiale 3D-Druckverfahren als Lösung vor.
Neben der Technologieentwicklung ist es uns wichtig, einen schnellen Marktzugang zu erreichen. Dazu ist es erforderlich, den zukünftigen Anwender*innen, d. h. Ingenieur*innen und Designer*innen, ein Werkzeug an die Hand zu geben, um die neue ESMA-Technologie in ihrer täglichen Praxis nutzen zu können. Zur Lösung komplexer Designaufgaben erweitern wir das bekannte TRIZ-Verfahren erweitert, um die Möglichkeit, Sensorik effektiv zu integrieren.
Die Demonstration der Vorteile der Technologie ist von entscheidender Bedeutung für die post-project Technologiediffusion. Aus diesem Grund wurden Impact-Cases entwickelt, welche das Potential der ESMA-Technologie zur Verbesserung der Lebensqualität vulnerabler Gruppen und für Frauen zu demonstrieren. Zudem wird demonstriert, wie ESMA-Technologien genutzt werden können, um eine grünere Produktion zu fördern.
Das Projektdesign ist so konzipiert, dass Folgeprojekte eine sinnvolle Ergänzung darstellen. Im Rahmen des ESMA-Projekts erfolgt die Entwicklung der Technologieplattform. In den Folgeprojekten sollen Use Cases für verschiedene Anwendungen gemeinsam mit der Industrie entwickelt werden.
- FFG (Fördergeber/Auftraggeber)
Laufzeit | Februar/2025 - März/2027 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Werkstofftechnik |
Studiengang | |
Forschungsprogramm | Interreg IT-AT 2021-2027 |
Förderinstitution/Auftraggeber |
Das Ziel des MICRO-ALPS besteht darin, lokale Gemeinden und Unternehmen für eines der aufkommenden Probleme des 21. Jahrhunderts zu sensibilisieren, nämlich Mikroplastik, mit besonderem Augenmerk auf die alpinen Gebiete, wo dieser Schadstoff noch wenig erforscht ist. Mikroplastik entsteht beim Abbau oder bei der Verarbeitung von Kunststoffen und kann nach der UNEP-Klassifizierung sehr unterschiedliche Größen haben. Dies ist möglich, wenn man einen Teil der Brillenindustrie als Bezugspunkt und Beispiel nimmt, nämlich die Werkstätten zum Schneiden und Schleifen von Brillengläsern, die bei der Verarbeitung von Brillengläsern große Mengen an Mikroplastik produzieren. Im Rahmen des Projekts werden die Partner untersuchen, welche Lösungen für die Rückgewinnung von Mikroplastik in Frage kommen, und ihre Recyclingfähigkeit für die Herstellung neuer und innovativer 3D-gedruckter Objekte aus Optikgeschäften und Glasschleifereien testen. Alle experimentellen Arbeiten und die gesammelten Informationen über die Art und die Produktion von Mikroplastik werden für den Wissenstransfer an die Personen im Programmgebiet genutzt, um die Produktion von Mikroplastik und dessen Freisetzung in die Umwelt zu vermeiden.
- Interreg IT-AT (Fördergeber/Auftraggeber)
- Certottica S.c.r.l. (Lead Partner)
- Università Cà Foscari Venezia
- Ökoinstitut Südtirol Alto Adige
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
Laufzeit | März/2025 - Oktober/2026 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Die Trastic GmbH produziert Tischplatten und Möbelfronten aus recyceltem Kunststoff und bezieht komplexere 3D-Teile wie Tischgestelle und Stühle zu. Diese externen Teile verursachen hohe Transportkosten und lange Lieferzeiten. Durch Eigenproduktion von Halbfertigteilen mittels 3D-Druck könnte Trastic Abhängigkeiten reduzieren, Lieferketten verkürzen und flexibler bei kleinen Aufträgen werden.
Im Projekt Flake-and-Print wurde HDPE (High-Density Polyethylen) als ideales Material für den 3D-Druck identifiziert, was zu einer deutlichen Reduktion des CO₂-Ausstoßes führt. Ein Lebenszyklusvergleich zeigt, dass 3D-gedruckte HDPE-Tischgestelle weniger Emissionen und Energieverbrauch verursachen als Stahlgestelle.
Mechanische Tests belegen, dass 3D-gedrucktes HDPE in Steifigkeit und Festigkeit mit gepresstem HDPE vergleichbar ist, jedoch geringere Bruchdehnung aufweist. Das schwarze HDPE zeigte die besten Ergebnisse bei Bewitterungstests. Durch Prozessoptimierungen wurde eine hohe Bauteilqualität erreicht, und verschiedene Druckbettmaterialien verbesserten die Haftung.
Zur Fertigung der Tischgestelle wurden funktionale Muster entwickelt, die sich für Nachbearbeitungsmethoden wie Fräsen und Bohren eigneten. Fügetechniken wie Schraubverbindungen und Schweißverbindungen ermöglichten stabile, recyclingfähige Verbindungen. Das Projekt beweist, dass eine ressourceneffiziente Produktion sowohl ökologischen als auch ästhetischen Ansprüchen gerecht wird.
- Trastic GmbH (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Jänner/2022 - Dezember/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Robotik |
Studiengang | |
Forschungsprogramm | Produktion der Zukunft |
Förderinstitution/Auftraggeber |
Nanogoes3D vereint verschiedene Disziplinen für die Entwicklung von 3D-gedruckten Sohlen für individualisierte Schuhe im Sportbereich. Die Kombination aus Nanomaterialien und 3D-Druck-Technologie ermöglicht die Herstellung einer flexiblen, leichten und kostengünstigen intelligenten Schuheinlegesohle mit antibakteriellen Eigenschaften.
Die Forschung gliedert sich in drei Bereiche:
a) Entwicklung geeigneter Nanomaterialien für sensorische und antibakterielle Eigenschaften;
b) Design und Entwicklung von 3D-Einlegesohlen mit hervorragenden physikalischen und mechanischen Eigenschaften;
c) Entwicklung eines 3D-gedruckten intelligenten Einlegesohlen-Demonstrators durch Etablierung des optimalen Benutzerschnittstellenkonzepts auf der Grundlage von FEM-Simulationen.
- FFG (Fördergeber/Auftraggeber)
- Wood K plus - Kompetenzzentrum Holz GmbH (Lead Partner)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung)
- Maierhofer GmbH
- Kästle GmbH
Laufzeit | Juli/2023 - Juli/2024 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Kunststofftechnik |
Studiengang | |
Forschungsprogramm | FFG - Basisprogramm Ausschreibung 2023 |
Förderinstitution/Auftraggeber |
Durch das Recycling von Kunststoffabfällen können große Mengen an klimarelevanten Treibhausgasen vermieden werden. Aus dieser Motivation heraus hat sich die Trastic GmbH das Upcycling von Kunststoffabfällen zu individuellen und hochwertigen Möbeln zum Ziel gesetzt. Zu diesem Zweck hat sie ein Verfahren zur Herstellung von Möbelplatten aus recyceltem Kunststoff entwickelt. Allerdings lassen sich mit dem entwickelten Verfahren nur relativ einfache Geometrien herstellen. Ziel dieses Projekts ist es daher, einen Prozess zu entwickeln, mit dem sich farblich und mechanisch integrierbare Teile mit komplexeren Geometrien zur Aufwertung der gepressten Möbelstücke herstellen lassen. Dieser Prozess sollte in der Lage sein, die gleichen Rohstoffe wie das bisher entwickelte Pressverfahren zu verarbeiten, ebenso wie die dabei anfallenden Abfälle und Verschnitte. In diesem Zusammenhang ist die additive Fertigung auf Basis der Materialextrusion besonders interessant. Konkret sollen die Materialien in Form von Pellets verarbeitet werden, damit durch den Wegfall der Filamentherstellung massiv Energie gespart und die notwendige Verarbeitungsgeschwindigkeit erreicht wird.
- FFG (Fördergeber/Auftraggeber)
- Trastic GmbH (Lead Partner)
Laufzeit | Februar/2021 - Dezember/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - COIN Aufbau 8. Ausschreibung |
Förderinstitution/Auftraggeber |
Currently available medical assistance products (orthoses, rehabilitation equipment, etc.) are often laborious to manufacture (Functional Need FN1), the fabrication results in a considerable amount of waste (Social Need SN1), e.g. through casting molds, and so leads to expensive products (SN2). At the same time, products are optically not appealing (SN3), heavy (FN2) and lack individualization and functionalization. Similar to clothes with ready-made sizes, they often do not fit the respective user (FN3). Fit and function are not monitored (FN4), which can cause pain, infections and other injuries. This is where 3D-printing can offer a sustainable. 3D-printing is an essential technology to make today's manufacturing more resource-efficient, sustainable and flexible. However, 3D printing has not yet been able to exploit its potential for medical devices due to the following technological needs:
- (TN1) Material can only be stacked in layers.
- (TN2) Material combinations have not yet been investigated thoroughly.
- (TN3) Support structures are complex and cannot be released easily.
- (TN4) Functional components are not considered in the design and manufacturing process.
iLEAD starts here and examines the following areas (Goals):
- (G1) Multimaterial 3D-printing: material structure, compatibility analyses and print head design (addresses (FN1, SN1, TN2,3)).
- (G2) Lightweight lattice and simulation-based optimization (addresses (SN1,3, FN2, TN3)).
- (G3) 3D-printing strategies for 5-axis printing (addresses (FN2, TN1,3)).
- (G4) Intelligent functionalization of products (addresses (FN4, TN4)).
- (G5) Holistic participatory development process including users (addresses SN3, FN3,4).
By 3D-printing of endless fibre composites, load-bearing and adaptive structures can be integrated into medical assistance products (e.g. shafts for legs). Combination of different materials enables to adjust the stiffness of lightweight lattices and to integrate sensors at relevant points during production (e.g. individualized splints with monitoring of training state) for the first time. The developed technology enables products to be individualized, exhibit high mechanical strength, while at the same time being cost-efficient, material- and weight-saving. iLEAD aims to produce medical assistance products WITH AND FOR the users by continuous user-centered-design, involving future users and experts in the field of therapy. Thus, iLEAD leads to an international leadership and pioneering position in 3D-printing technology with focus on medical assistance products.
- FFG (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | August/2022 - Februar/2023 |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Schadstoffemission |
Studiengang | |
Forschungsprogramm | nicht wirtschaftliche Forschung |
Förderinstitution/Auftraggeber |
Kärntens CO2-Umsatz wurde in einem Modell (oemof: open energy modelling framework) abgebildet. Anhand des Modells können in Zwischenschritten, beispielsweise in 3- oder 5-Jahres-Perioden, Zielsetzungen sowie Transformationspfade und deren Auswirkungen auf dem Weg zur Klimaneutralität simuliert werden. Im Modell sind die täglich und jahreszeitlich bedingten Erzeugungs- und Bedarfsschwankungen, wie sie u.a. beim Strom- und Heizenergiebedarf auftreten, berücksichtigt. Das Modell liefert Szenarien für eine optimale Kopplung der verschiedenen Energiesektoren wie z. B. Strom, Gase und (Fern-)wärme, sowie den damit verbundenen Speicherbedarfen. Damit können Aussagen zur angestrebten CO2 Neutralität nicht nur bilanziell, also über das Jahr gesehen, sondern stundenfein mit Gültigkeit zu jedem beliebigen Zeitpunkt im Jahresverlauf getroffen werden. Das Modell berücksichtigt einerseits Vorgaben wie das CO2-Budget Kärntens, allgemein anerkannte Bilanzgrenzen, aktuelle und zukünftige Emissionen, Energiebedarfe und die zur Verfügung stehenden Technologien mit deren Kosten, sowie andererseits die Auswirkungen von Restriktionen wie die vorhandenen Potentiale erneuerbarer Energien und gesellschaftlich/politische Vorgaben.
- Amt der Kärntner Landesregierung - Abteilung 8 (Fördergeber/Auftraggeber)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Juli/2022 - Dezember/2023 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Prothetik |
Studiengänge | |
Forschungsprogramm | FFG - FEMtech |
Förderinstitution/Auftraggeber |
Ziel des Projektes PROTEA ist es, durch die Zusammenarbeit von Industrie, Forschung und Genderexpert*innen die Vorteile des 3D-Drucks für Prothesen unter Berücksichtigung gender- und diversitätsbezogener Aspekte zu erarbeiten und zur Umsetzung zu bringen.
Es wird Innovation im Gesamtfertigungsprozess von medizintechnischen Assistenzprodukten (MAP) durch Ergebnisse in mehreren Bereichen erzielt:
1. Durch einen partizipativen Technikgestaltungsansatz werden die Bedürfnisse und Praktiken der Nutzergruppen (Prothesenträger*innen, Ärzt*innen, Therapeut*innen etc.) gleich von Beginn an berücksichtigt und in zukünftige Produktionsschritte inkludiert.
2. Durch die Arbeit mit Unternehmen im Bereich 3D-Druck werden diese bezüglich Gender und Diversität sensibilisiert, wodurch sie die verschiedenen Anforderungen diverser Nutzergruppen im Bereich Medizintechnik besser verstehen und bedienen können.
3. Durch die Arbeit mit der relevanten Industrie (Orthopädietechniker*innen) wird das Vertrauen in diese neue Fertigungstechnologie gestärkt.
4. Durch technologische Innovation im Bereich von Material, Materialkombinationen und Topologieoptimierung werden die Passgenauigkeit, der Tragekomfort und dadurch die Akzeptanz der 3D-gedruckten Prothese erhöht, die integrierte Sensorik unterstützt die Anpassung zusätzlich.
Dadurch ergibt sich nicht nur für Prothesenträger*innen ein Vorteil im Bereich des Tragekomforts, sondern auch für Orthopädietechniker*innen ein Wettbewerbsvorteil durch ein vergleichsweise kostengünstiges und funktionales Produkt, bei dem durch das kontinuierliche Monitoring in den Alltagssituationen auftretende Problemfelder rascher und zielgenauer erkannt und behoben werden können. Die teilnehmenden Projektpartner sind neben der FH Kärnten (Forschungsgruppe AAL und Forschungszentrum ADMiRE) das Interdisziplinäre Forschungszentrum für Technik, Arbeit und Kultur, Luxinergy GmbH und Sepin Orthopädietechnik. Das Projekt wird aus den Mitteln der FFG gefördert.
- FFG (Fördergeber/Auftraggeber)
- Sepin Orthopädietechnik Sanitätshaus GmbH
- Luxinergy GmbH
- Interdisziplinäres Forschungszentrum für Technik, Arbeit und Kultur (IFZ)
- FH Kärnten - gemeinnützige Gesellschaft mbH (Forschung) (Lead Partner)
Laufzeit | Jänner/2020 - März/2022 |
Homepage | |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Automatisierungstechnik |
Studiengänge | |
Forschungsprogramm | INTERREG VA SI-AT |
Förderinstitution/Auftraggeber |
Das übergeordnete Projektziel war die Stärkung von grenzübergreifendem Wettbewerb, Forschung und Innovationdurch die Einrichtung einer gemeinsamen AM-Technologieplattform. Im ProjektASAM wurde die Kooperation der beiden Hochtechnologiestandorte Region Ljubljana und Technologiepark Villach im Schwerpunktbereich „Additive Manufacturing AM“ auf ein professionelles Niveau angehoben und es wurde eine gemeinsamegrenzübergreifende AM-Plattform etabliert. Mittelfristige Zielsetzung war es, die Makroregion (Slowenien, Österreich, Norditalien, Kroatien) zu einer europäischen Leaderregion für AM-Technologien zu entwickeln.
Kofinanziert durch den Europäischen Fonds für regionale Entwicklung
The overarching project objective was to strengthen cross-border competition, research and innovation by establishing a joint AM technology platform. In the ASAM project, cooperation between the two high-techlocations Ljubljana Region and Villach Technology Park in the key area of`Additive Manufacturing AM´ was raised to a professional level and a joint cross-border AM platform was established. The medium-term objective was to develop the macro-region (Slovenia, Austria, northern Italy, Croatia) into a European regional leader for AM technologies.
Co-financed by the European Regional Development Fond
Laufzeit | Februar/2021 - Dezember/2022 |
Homepage | Nähere Informationen finden Sie auf www.efre.gv.at |
Projektleitung | |
Projektmitarbeiter*innen | |
Forschungsschwerpunkt | Fertigungstechnik |
Studiengänge | |
Forschungsprogramm | Regionale Impulsförderung/EFRE-REACT |
Förderinstitution/Auftraggeber |
Die drei Partner arbeiten im Projekt EFRE Smarter Leichtbau 4.0 seit dem Jahr 2018 erfolgreich zusammen. Die Schwerpunkte dieses Projekts waren bzw. sind:
• Leichtbau mit Faserverbundwerkstoffen zur Effizienzsteigerung und besseren Nachhaltigkeit für unterschiedlichste Anwendungen
• Weiterentwicklung der Faserwerkstoffe insbesonders in Richtung nachwachsende Rohstoffe
• Integration von Sensorik für smarte Funktionalität bzw. zur effizienten Prozesssteuerung
• Zerstörungsfreie Werkstoffprüfung und Prozessanalytik-Technologie
Parallel dazu wurden die Forscher dieser Technologien im Rahmen des Trainingsprogramms „Scientrepreneur – Basiswissen für Gründer*innen“ hinsichtlich unternehmerischer Verwertung sensibilisiert und ihnen Grundkompetenzen unternehmerischen Denkens und Handelns vermittelt. Das Trainingsprogramm wurde für Forscher*innen der beteiligten Instiutionen zweimal abgehalten.
Darüber hinaus wurde ein „ideales“ gesamtheitliches Konzept zur Implementierung von Unternehmertum an Hochschulen und Forschungseinrichtungen entwickelt. Dieses Konzept beinhaltet nicht nur einen Spin-off-Prozess auf der operativen Ebene, sondern auch Aufgaben, Prozesse und Methoden auf der normativen und strategischen Ebene einer Organisation.
Gemeinsame Projekteinreichungen mit Unternehmen der Region, die auf den Ergebnissen aufbauen (beispielsweise Prosthetics 4.0), wissenschaftliche Publikationen bis hin zur Vorstellung des Projekts im Rahmen der Veranstaltung Europa in meiner Region als eines von 3 Kärntner Projekten belegen die erfolgreiche Zusammarbeit der Partner und es konnte ein signifikanter Mehrwert durch die Kooperation erreicht werden.
Ende des Jahres 2019 hat die Europäische Kommission den europäischen Grünen Deal vorgestellt, um Maßnahmen zu setzen um die Bedrohung von Klimawandel und Umweltzerstörung abzuwenden und der gleichzeitig eine Wachstumsstrategie für den Übergang zu einer modernen, ressourceneffizienten Wirtschaft darstellt.
Die aktuelle Krise zufolge COVID 19 führt zusätzlich zu einem Umdenken im Hinblick auf Lieferketten und Versorgung weit über Lebensmittel hinaus.
Beide Aspekte sprechen für Smarten Leichtbau insbesonders mit nachwachsenden Rohstoffen.
Leichtbau in allen Anwendungen ist ein notwendiger Aspekt um Ressourcen zu sparen. Neben den primären Ressourcen in der Herstellung ermöglicht er vor allem bei Konstruktionen die in irgendeiner Form bewegt werden, Einsparungen im Betrieb durch geringeres Gewicht. Der Einsatz von nachwachsenden Rohstoffen, insbesonders als Verstärkungsfaser ermöglicht den Einsatz regionaler Rohstoffe, und regionaler Fertigung. Der Einsatz von Sensorik ermöglicht eine Schnittstelle zur digitalen Welt und trägt darüber hinaus zur weiteren Ressourceneinsparung bei, da Materialien optimal ausgenutzt werden können.
Auf diese Eckpunkte und die bereits erreichten Ergebnisse baut der eigenständige EFRE Antrag Smarter Leichtbau 4.1 auf, der einen signfikanten neuen Schritt in der Arbeit und der Kooperation darstellt.
Dieses Projekt wird aus Mitteln des EFRE Europäischen Fonds für regionale Entwicklung kofinanziert.
- KWF - Kärntner Wirtschaftsförderungsfonds (Fördergeber/Auftraggeber)
- W3C Wood Carinthian Competence Center (Lead Partner)
- Silicon Austria Labs GmbH
Artikel in Zeitschriften | ||
---|---|---|
Titel | Autor | Jahr |
Experimental quantification of the variability of the mechanical properties in 3D printed continuous fiber composites Appl. Sci. | Becker, C., Oberlercher, H., Heim, R., Wuzella, G., Faller, L., Riemelmoser, F., Nicolay, P., Druesne, F. | 2021 |
Artikel in Zeitschriften | ||
---|---|---|
Titel | Autor | Jahr |
Experimental quantification of the variability of the mechanical properties in 3D printed continuous fiber composites Appl. Sci. | Becker, C., Oberlercher, H., Heim, R., Wuzella, G., Faller, L., Riemelmoser, F., Nicolay, P., Druesne, F. | 2021 |